• Title/Summary/Keyword: K-shell Position

Search Result 58, Processing Time 0.027 seconds

A Study on the Automatic Sensing Device for Gas Leakage of Cooling Plate Using the Microprocessor System

  • Wang, Jee-Seok;Yoon, Hee-Jong;Kang, Ki-Seong;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • The cooling water circulation plates had been used to drop the temperature of refractory outside shell of common cooling system by using cooling plate or stave type. When they are attacked by surrounding gas, they are corroded and the water flows in the refractory due to leakage of water. So, the life of refractory material is shortened and changed due to the worse conditions of cooling system. The automatic sensing device for water leakage of cooling plate is developed to check the position of trouble by using the microprocessor system when cooling water leak and gas are flowed into the cooling plate through the leakage position. The flowed gas is detected in the micro-process system which delivers the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave against the water leakage part immediately and then deliver the signal to main control room by using the microprocessor system and wireless-radio relay station. This system will be developed in changing the working condition from manual system to unmanned auto alarm system.

An Experimental Study of Aerodynamic Characteristics on a Projectile with Counter-Rotating Head Installed Fins (조종면이 장착된 회전하는 발사체에서의 공력특성 분석에 관한 실험적 연구)

  • Park, Young-Ha;Je, Sang-Eon;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.357-365
    • /
    • 2013
  • In this study, forces and moments were measured on a projectile which consisted of a missile configuration body(shell) and a head installed control fins. The shell and the head were separated each other and the shell was rotated by an electric motor. The head rotated reversely against the rotational direction of the shell. The rotational force on the head was obtained from a couple of fixed fins of which angular displacement were set to the rotational direction equally. The air velocity was 40m/s on the experiment and the Reynolds number based on the diameter of head was $1.3{\times}10^5$. The other couple of fins were used to control the position and direction of the projectile by changing the angular displacement. From this experiment, the variation of force and moment were measured on the rotating projectile, and the effective amplitude and frequency were obtained through the FFT analysis.

Three-dimensional Numerical Modeling of Fluid Flow and Heat Transfer in Continuously Cast Billets (연속주조 빌렛의 3차원 열 및 유동해석)

  • Lee, Sung-Yoon;Lee, Sang-Mok;Park, Joong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.290-299
    • /
    • 2000
  • A three-dimensional model was developed in order to simulate heat and fluid flow of a continuous casting billet. The model was coded with the general-purpose CFD program FIDAP, using the finite element method. The present model consists of 2 individual calculation schemes, named model 1 and model 2. Mold region only was calculated to check the pouring stream through submerged nozzle with model 1. Entire region, which consists of mold, secondary cooling, radiation cooling was calculated to predict crater end position, temperature profile and solid shell profile(model 2). Standard $k-{\bullet}\hat{A}$ turbulence model has been applied to simulate the turbulent flow induced by submerged nozzle. Enthalpy method was adopted for the latent heat of solidification. Fluid flow in mushy zone was treated using variable viscosity approach. The more casting speed and superheat increased, the more metallurgical length increased. The shell thickness at the mold exit is proved to be mainly controlled by superheat by the present simulation. It may be concluded that the present model can be successfully applied far the prediction of heat and fluid flow behavior in the continuous casting process.

  • PDF

Study on Error Correction of Impact Sound Position Estimation Using Ray Tracing (음선 추적을 이용한 폭발음 위치추정 오차 보정에 대한 연구)

  • Choi, Donghun;Go, Yeong-Ju;Lee, Jaehyung;Na, Taeheum;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2016
  • TDOA(time delay of arrival) position estimate from acoustic measurement of artillery shell impact is studied in order to develop a targeting evaluation system. Impact position is calculated from the intersections of hyperbolic estimates based on the least square Taylor series method. The mathematical process of Taylor series estimation is known to be robust. However, the concern lays with the accuracy because it is sensitive to the bias caused by the randomness of measurement situation. The measurement error typically occurs from the distortion of waveform, change of travelling path, and sensor position error. For outdoor measurement, a consideration should be made on the atmospheric condition such as temperature and wind which can possibly change the trajectories of rays of sound. It produces wrong propagation time events accordingly. Ray tracing and optimization techniques are introduced in this study to minimize the bias induced by the ray of sound. The numerical simulation shows that the atmospheric correction improves the estimation accuracy.

Specific Absorption Rate Values of Handsets in Cheek Position at 835 MHz as a Function of Scaled Specific Anthropomorphic Mannequin Models

  • Lee, Ae-Kyoung;Choi, Hyung-Do;Choi, Jae-Ick;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.227-230
    • /
    • 2005
  • A specific anthropomorphic mannequin (SAM) model was used to investigate the relation between local specific absorption rate (SAR) and head size. The model was scaled to 80 to 100% sized models at intervals of 5%. We assumed that the shell of the SAM model has the same properties as the head-equivalent tissue. Five handsets with a monopole antenna operating at 835 MHz were placed in the approximate cheek position against the scaled SAM models. The handsets had different antenna lengths, antenna positions, body sizes, and external materials. SAR distributions in the scaled SAM models were computed using the finite-difference time-domain method. We found that a larger head causes a distinct increase in the spatial peak 1-voxel SAR, while head size did not significantly change the peak 1-g averaged-SAR and 10-g averaged-SAR values for the same power level delivered to the antenna.

  • PDF

On the Numerical Procedure for Estimating Structural Stress of Welded Structures (수치해석을 통한 용접구조물의 구조응력 추정에 관한 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.388-395
    • /
    • 2005
  • A numerical procedure is proposed as a mesh-size insensitive structural stress definition that gives a stress state at a weld toe with relatively large mesh size. The structural stress values obtained using different finite element types, i.e. shell element and solid element, are examined for typical weld structures. The calculation procedures are performed using the balanced nodal forces and moments obtained from finite element solutions. A consistent formulation based on work equivalent argument has been implemented to transform the balanced nodal forces and moments from shell to line force and line moments at each nodal position. The mesh-insensitivity, the effect of distance $\delta$(where the stress is calculated) and the potential limitations of the structural stress method are examined for various types of weldments. Based on the results from this study, it is expected to develop a more precise stress estimation technique for fatigue strength assessment of welded structures.

STUDIES ON THE MORTALITY OF THE YOUNG BIVALVES, MERETRIX LUSORIA (1) Boring Rates of Drills on the Young Bivalve, Meretrix lusoria (대합 Meretrix lusoria 치패의 폐사에 관한 연구 (1) 대합치패의 천공복족류 Neverita didyma, Natica severa에 의한 천공률에 관하여)

  • LEE Jung Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.63-70
    • /
    • 1969
  • 1. This paper deals with the natural mortality of the early young bivalve, Meretrix lusoria, (less than 13mm in shell length) and the perforations bored in the bivalve by bering snails, Neverita didyma and Natica severa. The investigation was carried out in the Kunsan area and in the laboratory from May to October of 1968. 2. The natural mortality of the field population during this period was $12.1\%$ and among this number $38.1\%$ were drilled by boring snails. 3. The common species of the Naticid gastropods, boring snails-Neverite didyma and Natice severa - are encountered in the habitat of M. lusoria. The perforations drilled by these species were broadly bevelled. 4. The location of the holes on the valves varied widely, while most of holes on the valves were located at a relatively definite umbo position. 5. The inner and outer diameters of the holes varied in proportion to the shell length of the clam; each ranging in shell length from 1 to 3mm, 3 to 6mm, and 6 to 13mm, and the outer diameters were 0.4-0.5mm, 0.7-0.9mm and 0.9-1.2mm. On the other hand, the ratio of the inner and outer diameters differed in proportion to the shell length of the clam. 6. Predation rates of Neverita didyma was much greater at night than during the day at room temperature. An average of 1.7 young clams was drilled and consumed, per snail, per day. This rate was greater than that of the Natica severa. 7 Predation rates varied in proportion to the shell length of the clam and the shell height of the snails.

  • PDF

Finite Element Analysis on the Stress and Deformation Behaviors of a Safety Helmet (안전헬멧의 응력 및 변형거동에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • This paper presents the stress and deformation behaviors using the finite element method as a function of the thickness of the helmets without the bead frames on the top of the shell structure. The helmet that would provide head and neck protections without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and impact energy absorption. The FEM computed results show that when the impulsive force is applied on the top surface of a helmet, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the top surface of the helmet shell. As the helmet thickness is decreased from 4mm to 2mm, the impact energy absorbing rate is radically increased, and the maximum stress of the helmet is increased over the tensile strength, 54.3MPa of the thermoplastic material. Thus, the top surface of the helmet should be supported by a bead frame and increased thickness of the shell structure.

  • PDF

Numerical Study of Polarization-Dependent Emission Properties of Localized-Surface-Plasmon-Coupled Light Emitting Diodes with Ag/SiO2 Na

  • Moon, Seul-Ki;Yang, Jin-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.582-588
    • /
    • 2014
  • We study polarization-dependent spontaneous emission (SE) rate and light extraction efficiency (LEE) in localized-surface-plasmon (LSP)-coupled light emitting diodes (LEDs). The closely packed seven $Ag/SiO_2$ core-shell (CS) nanoparticles (NPs) lie on top of the GaN surface for LSP coupling with a radiated dipole. According to the dipole direction, both the SE rate and the LEE are significantly modified by the LSP effect at the $Ag/SiO_2$ CS NPs when the size of Ag, the thickness of $SiO_2$, and the position of the dipole source are varied. The enhancement of the SE rate is related to an induced dipole effect at the Ag, and the high LEE is caused by light scattering with an LSP mode at $Ag/SiO_2$ CS NPs. We suggest the optimum position of the quantum well (QW) in blue InGaN/GaN LEDs with $Ag/SiO_2$ CS NPs for practical application.

Luminance Change Independent 3D Snail Tracking

  • Dewi, Primastuti;Choi, Yoen-Seok;Chon, Tae-Soo;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.175-178
    • /
    • 2010
  • Slow movement of snail can be a benefit since it means less speed of tracking is required to get accurate movement track, but in the other side it is difficult to extract the object because the snail is almost as static as the background. In this paper, we present a technique to track the snail by using one of its common characteristic, dark color of its shell. The technique needs to be robust to illumination change since the experiment is usually to observe the movement of snail both at bright and dim condition. Snail position coordinate in 3D space is calculated using orthogonal stereo vision which combines the information from two images taken from cameras at the top and in front of the aquarium. Experimental results show this technique does not need prior background image extraction and robust to gradual or sudden illumination change.

  • PDF