• Title/Summary/Keyword: K-means Clustering Analysis

Search Result 462, Processing Time 0.022 seconds

Correlation between Impervious Surface Area Rate and Urbanization Indicators at the Si-Gun Level (시군단위의 불투수면적률과 도시화 지표의 상관성 분석)

  • Jang, Min-Won;Kim, Hyeonjoon;Choi, Yoonhee;Kim, Hakkwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.55-67
    • /
    • 2023
  • This study investigated the correlation between impervious surface area rate(ISAR) and various urbanization indicators at the si-gun administrative level. For the years 2017 and 2021, we built correlation matrices to examine the relationships between ISAR and eight urbanization indicators, including total population, working-age population, residential power consumption, non-agricultural power consumption, paved road length, permitted development area, numbers of registered vehicles, and cadastral 'Dae' parcel area. Additionally, K-means clustering was employed to classify the 229 si-guns based on the ISAR change patterns. The analysis revealed a significant positive correlation between ISAR and urbanization indicators for both years studied. However, the interannual comparison showed a noticeably weaker correlation between changes in ISAR and urbanization indicators from 2017 to 2021. The K-means analysis also showed that si-guns with higher ISAR values, typically urban areas, demonstrated a weaker correlation, while the cluster consisting mostly of rural areas with lower ISAR displayed stronger correlations. These results suggested that ISAR should be a significant factor for consideration in sustainable rural planning and development strategies.

Switching Regression Analysis via Fuzzy LS-SVM

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.609-617
    • /
    • 2006
  • A new fuzzy c-regression algorithm for switching regression analysis is presented, which combines fuzzy c-means clustering and least squares support vector machine. This algorithm can detect outliers in switching regression models while yielding the simultaneous estimates of the associated parameters together with a fuzzy c-partitions of data. It can be employed for the model-free nonlinear regression which does not assume the underlying form of the regression function. We illustrate the new approach with some numerical examples that show how it can be used to fit switching regression models to almost all types of mixed data.

  • PDF

Bootstrapping and DNA marker Mining of BMS941 microsatellite locus in Hanwoo chromosome 17

  • Lee, Jea-Young;Bae, Jung-Hwan;Yeo, Jung-Sou
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1103-1113
    • /
    • 2007
  • LOD scores and a permutation test for detecting and locating Quantitative trait loci(QTL) from the Hanwoo economic trait have been described and we selected a considerable major BMS941 locus. K -means clustering analysis of eight markers in BMS941 and four traits resulted in three cluster groups. Finally, we applied the bootstrap test method to calculate confidence intervals for finding major DNA markers. We conclude that the major markers of BMS941 locus in Hanwoo chromosome 17 are markers 85bp and 105bp.

  • PDF

Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition: Focused on Tensile Test (패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구: 인장시험을 중심으로)

  • Kim, Gil-Dong;Rhee, Zhang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.127-134
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Monotonic simple tension and AE tests were conducted against the 3 kinds of welded specimen. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multi-variate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

A Comparison of Cluster Analyses and Clustering of Sensory Data on Hanwoo Bulls (군집분석 비교 및 한우 관능평가데이터 군집화)

  • Kim, Jae-Hee;Ko, Yoon-Sil
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.745-758
    • /
    • 2009
  • Cluster analysis is the automated search for groups of related observations in a data set. To group the observations into clusters many techniques has been proposed, and a variety measures aimed at validating the results of a cluster analysis have been suggested. In this paper, we compare complete linkage, Ward's method, K-means and model-based clustering and compute validity measures such as connectivity, Dunn Index and silhouette with simulated data from multivariate distributions. We also select a clustering algorithm and determine the number of clusters of Korean consumers based on Korean consumers' palatability scores for Hanwoo bull in BBQ cooking method.

An Analysis of Player Types using Data Clustering in Gamification (데이터 클러스터링을 활용한 게이미피케이션 환경에서의 플레이어 유형 분석)

  • Park, Sungjin;Kang, Bumsoo;Kim, Sungsoo;Kim, Sangkyun
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.77-88
    • /
    • 2017
  • The purpose of this study is to compare existing player type theories using data clustering. For the study, 235 result data of the gamified class in second semester of A university at 2016 used. This study applied K-means and Silhouette to decide the appropriate number of clusters. The player types applied in this study are Bartle's 2-D and 3-D player types, Ferro's five types, and BrainHex. According to the results, Bartle's 2D player type was found to be the best in perspective of data clustering. This study also analyzed the distribution of characteristics for each player types. The results of this study are expected to have an impact on player analysis, which is used in the application of gamification or in the development process.

Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm (인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘)

  • Park, Kiwon;Hwang, Gun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.

Customer Classification and Market Basket Analysis Using K-Means Clustering and Association Rules: Evidence from Distribution Big Data of Korean Retailing Company (군집분석과 연관규칙을 활용한 고객 분류 및 장바구니 분석: 소매 유통 빅데이터를 중심으로)

  • Liu, Run-Qing;Lee, Young-Chan;Mu, Hong-Lei
    • Knowledge Management Research
    • /
    • v.19 no.4
    • /
    • pp.59-76
    • /
    • 2018
  • With the arrival of the big data era, customer data and data mining analysis have gradually dominated the process of Customer Relationship Management (CRM). This phenomenon indicates that customer data along with the use of information techniques (IT) have become the basis for building a successful CRM strategy. However, some companies can not discover valuable information through a large amount of customer data, which leads to the failure of making appropriate business strategy. Without suitable strategies, the companies may lose the competitive advantage or probably go bankrupt. The purpose of this study is to propose CRM strategies by segmenting customers into VIPs and Non-VIPs and identifying purchase patterns using the the VIPs' transaction data and data mining techniques (K-means clustering and association rules) of online shopping mall in Korea. The results of this paper indicate that 227 customers were segmented into VIPs among 1866 customers. And according to 51,080 transactions data of VIPs, home product and women wear are frequently associated with food, which means that the purchase of home product or women wears mainly affect the purchase of food. Therefore, marketing managers of shopping mall should consider these shopping patterns when they build CRM strategy.

Analysis of Chicken Feather Color Phenotypes Classified by K-Means Clustering using Reciprocal F2 Chicken Populations (K-Means Clustering으로 분류한 닭 깃털색 표현형의 분석)

  • Park, Jongho;Heo, Seonyeong;Kim, Minjun;Cho, Eunjin;Cha, Jihye;Jin, Daehyeok;Koh, Yeong Jun;Lee, Seung-Hwan;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.49 no.3
    • /
    • pp.157-165
    • /
    • 2022
  • Chickens are a species of vertebrate with varying colors. Various colors of chickens must be classified to find color-related genes. In the past, color scoring was performed based on human visual observation. Therefore, chicken colors have not been measured with precise standards. In order to solve this problem, a computer vision approach was used in this study. Image quantization based on k-means clustering for all pixels of RGB values can objectively distinguish inherited colors that are expressed in various ways. This study was also conducted to determine whether plumage color differences exist in the reciprocal cross lines between two breeds: black Yeonsan Ogye (YO) and White Leghorn (WL). Line B is a crossbred line between YO males and WL females while Line L is a reciprocal crossbred line between WL males and YO females. One male and ten females were selected for each F1 line, and full-sib mating was conducted to generate 883 F2 birds. The results indicate that the distribution of light and dark colors of k-means clustering converged to 7:3. Additionally, the color of Line B was lighter than that of Line L (P<0.01). This study suggests that the genes underlying plumage colors can be identified using quantification values from the computer vision approach described in this study.

Defect Diagnosis of Cable Insulating Materials by Partial Discharge Statistical Analysis

  • Shin, Jong-Yeol;Park, Hee-Doo;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • Polymer insulating materials such as cross linked polyethylene (XLPE) are employed in electric cables used for extra high voltage. These materials can degrade due to chemical, mechanical and electric stress, possibly caused by voids, the presence of extrinsic materials and protrusions. Therefore, this study measured discharge patterns, discharge phase angle, quantity and occurrence frequency as well as changes in XLPE under different temperatures and applied voltages. To quantitatively analyze the irregular partial discharge patterns measured, the discharge patterns were examined using a statistical program. A three layer sample was fabricated, wherein the upper and lower layers were composed of non-void XLPE, while the middle layer was composed of an air void and copper particles. After heating to room temperature and $50^{\circ}C$ and $80^{\circ}C$ in silicone oil, partial discharge characteristics were studied by increasing the voltage from the inception voltage to the breakdown voltage. Partial discharge statistical analysis showed that when the K-means clustering was carried out at 9 kV to determine the void discharge characteristics, the amount discharged at low temperatures was small but when the temperature was increased to $80^{\circ}C$, the discharge amount increased to be 5.7 times more than that at room temperature because electric charge injection became easier. An analysis of the kurtosis and the skewness confirmed that positive and negative polarity had counterclockwise and clockwise clustering distribution, respectively. When 5 kV was applied to copper particles, the K-means was conducted as the temperature changed from $50^{\circ}C$ to $80^{\circ}C$. The amount of charge at a positive polarity increased 20.3% and the amount of charge at a negative polarity increased 54.9%. The clustering distribution of a positive polarity and negative polarity showed a straight line in the kurtosis and skewness analyses.