• Title/Summary/Keyword: K-means방법

Search Result 2,402, Processing Time 0.026 seconds

A Study On Predicting Stock Prices Of Hallyu Content Companies Using Two-Stage k-Means Clustering (2단계 k-평균 군집화를 활용한 한류컨텐츠 기업 주가 예측 연구)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.169-179
    • /
    • 2021
  • This study shows that the two-stage k-means clustering method can improve prediction performance by predicting the stock price, To this end, this study introduces the two-stage k-means clustering algorithm and tests the prediction performance through comparison with various machine learning techniques. It selects the cluster close to the prediction target obtained from the k-means clustering, and reapplies the k-means clustering method to the cluster to search for a cluster closer to the actual value. As a result, the predicted value of this method is shown to be closer to the actual stock price than the predicted values of other machine learning techniques. Furthermore, it shows a relatively stable predicted value despite the use of a relatively small cluster. Accordingly, this method can simultaneously improve the accuracy and stability of prediction, and it can be considered as the new clustering method useful for small data. In the future, developing the two-stage k-means clustering is required for the large-scale data application.

OrdinalEncoder based DNN for Natural Gas Leak Prediction (천연가스 누출 예측을 위한 OrdinalEncoder 기반 DNN)

  • Khongorzul, Dashdondov;Lee, Sang-Mu;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.7-13
    • /
    • 2019
  • The natural gas (NG), mostly methane leaks into the air, it is a big problem for the climate. detected NG leaks under U.S. city streets and collected data. In this paper, we introduced a Deep Neural Network (DNN) classification of prediction for a level of NS leak. The proposed method is OrdinalEncoder(OE) based K-means clustering and Multilayer Perceptron(MLP) for predicting NG leak. The 15 features are the input neurons and the using backpropagation. In this paper, we propose the OE method for labeling target data using k-means clustering and compared normalization methods performance for NG leak prediction. There five normalization methods used. We have shown that our proposed OE based MLP method is accuracy 97.7%, F1-score 96.4%, which is relatively higher than the other methods. The system has implemented SPSS and Python, including its performance, is tested on real open data.

A Study on Improving Performance of Object Detection Model using K-means based Anchor Box Method in Edge Computing Enviroment (엣지 컴퓨팅 환경에서 K-means 기반 앵커박스 선정 기법을 활용한 물체 인식 모델 성능 개선 연구)

  • Seyeong Oh;Junho Jeong;Joosang Youn
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.539-540
    • /
    • 2023
  • 최근 물체 인식 모델의 성능을 개선하기 위한 다양한 연구가 진행 중이다. 본 논문에서는 K-means 기반 앵커박스 선정 기법을 적용한 새로운 물체 인식 모델 성능 개선 방법을 제안한다. 제안된 방법은 항만 내 설치된 컨테이너 사고를 예방하기 위한 컨테이너 사고위험도 분류 모델에 적용하여 성능 평가를 하였다. 특히, 컨테이너 사고위험도 분류 모델은 작은 물체를 인식해야 하며 이런 환경에서는 기존 물체 인식 모델 성능이 낮게 나타난다. 본 논문에서는 제안한 K-means 기반 앵커박스 선정 기법을 적용하여 물체 인식 모델 성능이 개선됨을 확인하였디.

  • PDF

Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation (블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법)

  • Kim, Geun-Jun;Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper presents Robust k-means clustering-based high-speed bar code decoding method to blur and lighting. for fast operation speed and robust decoding to blur, proposed method uses adaptive local threshold binarization methods that calculate threshold value by dividing blur region and a non-blurred region. Also, in order to prevent decoding fail from the noise, decoder based on k-means clustering algorithm is implemented using area data summed pixel width line of the same number of element. Results of simulation using samples taken at various worst case environment, the average success rate of proposed method is 98.47%. it showed the highest decoding success rate among the three comparison programs.

IDS Model using Improved Bayesian Network to improve the Intrusion Detection Rate (베이지안 네트워크 개선을 통한 탐지율 향상의 IDS 모델)

  • Choi, Bomin;Lee, Jungsik;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.495-503
    • /
    • 2014
  • In recent days, a study of the intrusion detection system collecting and analyzing network data, packet or logs, has been actively performed to response the network threats in computer security fields. In particular, Bayesian network has advantage of the inference functionality which can infer with only some of provided data, so studies of the intrusion system based on Bayesian network have been conducted in the prior. However, there were some limitations to calculate high detection performance because it didn't consider the problems as like complexity of the relation among network packets or continuos input data processing. Therefore, in this paper we proposed two methodologies based on K-menas clustering to improve detection rate by reforming the problems of prior models. At first, it can be improved by sophisticatedly setting interval range of nodes based on K-means clustering. And for the second, it can be improved by calculating robust CPT through applying weighted-leaning based on K-means clustering, too. We conducted the experiments to prove performance of our proposed methodologies by comparing K_WTAN_EM applied to proposed two methodologies with prior models. As the results of experiment, the detection rate of proposed model is higher about 7.78% than existing NBN(Naive Bayesian Network) IDS model, and is higher about 5.24% than TAN(Tree Augmented Bayesian Network) IDS mode and then we could prove excellence our proposing ideas.

The design method for a vector codebook using a variable weight and employing an improved splitting method (개선된 미세분할 방법과 가변적인 가중치를 사용한 벡터 부호책 설계 방법)

  • Cho, Che-Hwang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.462-469
    • /
    • 2002
  • While the conventional K-means algorithms use a fixed weight to design a vector codebook for all learning iterations, the proposed method employs a variable weight for learning iterations. The weight value of two or more beyond a convergent region is applied to obtain new codevectors at the initial learning iteration. The number of learning iteration applying a variable weight must be decreased for higher weight value at the initial learning iteration to design a better codebook. To enhance the splitting method that is used to generate an initial codebook, we propose a new method, which reduces the error between a representative vector and the member of training vectors. The method is that the representative vector with maximum squared error is rejected, but the vector with minimum error is splitting, and then we can obtain the better initial codevectors.

Selection of Cluster Hierarchy Depth in Hierarchical Clustering using K-Means Algorithm (K-means 알고리즘을 이용한 계층적 클러스터링에서의 클러스터 계층 깊이 선택)

  • Lee, Won-Hee;Lee, Shin-Won;Chung, Sung-Jong;An, Dong-Un
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.150-156
    • /
    • 2008
  • Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, with a large number of variables, K-means reduces a time complexity. Think of the factor of simplify, high-quality and high-efficiency, we combine the two approaches providing a new system named CONDOR system with hierarchical structure based on document clustering using K-means algorithm. Evaluated the performance on different hierarchy depth and initial uncertain centroid number based on variational relative document amount correspond to given queries. Comparing with regular method that the initial centroids have been established in advance, our method performance has been improved a lot.

The Effect of Variable Learning Weights in Fuzzy c-means algorithm (Fuzzy c-means 알고리즘에서의 가변학습 가중치의 효과)

  • 박소희;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.109-112
    • /
    • 2001
  • 기존의 K-means 알고리즘은 학습벡터가 단일군집에 할당되는 방법이 crisp 이므로 다른 군집에 할당될 확률을 무시하게 된다. 따라서 군집화 작업과 관련하여 반복적인 코드북 설계 과정에서 각 학습벡터를 다중 군집으로 할당하는 Fuzzy c-means를 사용한다. 또한 Fuzzy c-means 알고리즘의 학습과정에서 구해지는 각 클래스 의 프로토타입에 가중치를 곱하여 다음 학습의 프로토타입으로 사용함으로써 Fuzzy c-means 알고리즘 적용 결과 얻어지는 코트북의 성능을 기존 알고리즘과 비교하여 개선된 Fuzzy c-means 알고리즘을 찾기 위한 근거를 마련한다.

  • PDF

Initial codebook generation algorithm considering the number of member training vectors (소속 학습벡터 수를 고려한 초기 코드북 생성 알고리즘)

  • Kim HyungCheol;Cho CheHwang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.259-262
    • /
    • 2002
  • 벡터양자화에서 주어진 학습벡터를 가장 잘 대표할 수 있는 코드벡터의 집합인 코드북을 구하는 것은 가장 중요한 문제이다. 이러한 코드북을 구하는 알고리즘 중에서 가장 대표적인 방법은 K-means 알고리즘으로 그 성능이 초기 코드북에 크게 의존한다는 문제점을 가지고 있어 여러 가지 초기 코드북을 설계하는 알고리즘이 제안되어 왔다. 본 논문에서는 splitting 방법을 이용한 수정된 초기 코드북 생성 알고리즘을 제안하고자 한다. 제안된 방법에서는 기존외 splitting 방법을 적용하여 초기 코드북을 생성하되, 미소분리 과정 시 학습벡터의 수렴 빈도가 가장 낮은 코드벡터를 제거하고 수렴 빈도가 가장 높은 코드벡터를 미소분리 하여 수렴 빈도가 가장 낮은 코드벡터와 대체해가며 초기 코드북을 설계 한다. 제안된 방법의 적용온 기존 방법에서 MSE(mean square error)의 감소율이 가장 작은 미소분리 과정에서 시작하여 원하는 코드북 크기를 얻을 때까지 반복한다. 제안된 방법으로 생성된 초기 코드북을 사용하여 K-means 알고리즘을 수행한 결과 기존의 splitting 방법으로 생성된 초기 코드북을 사용한 경우보다 코드북의 성능이 향상되었다.

  • PDF

A Study on Process Data Compression Method by Clustering Method (클러스터링 기법을 이용한 공정 데이터의 압축 저장 기법에 관한 연구)

  • Kim Yoonsik;Mo Kyung Joo;Yoon En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.58-64
    • /
    • 2000
  • Data compression and retrieval method are investigated for the effective utilization of measured process data. In this paper, a new data compression method, Clustering Compression(CC), which is based on the k-means clustering algorithm and piecewise linear approximation method is suggested. Case studies on industrial data set showed the superior performance of clustering based techniques compared to other conventional methods and showed that CC could handle the compression of multi-dimensional data.

  • PDF