K-Means 알고리즘은 재배치 기법의 일종으로 K개의 초기 센트로이드를 중심으로 K개의 클러스터가 될 때까지 클러스터링을 반복하는 것이다. 알고리즘의 특성상 K-Means 알고리즘은 초기 클러스터 센트로이드(중심) 및 클러스터 중심을 결정하는 방법에 따라 다른 클러스터링 결과를 얻을 수 있다. 본 논문에서는 K-Means 알고리즘을 이용한 초기 클러스터 중심 및 클러스터 중심을 결정하는 방법을 개선한 변형 K-Means 알고리즘을 제안한다. 제안한 알고리즘의 평가를 위하여 SMART 시스템의 16가지 가중치 계산 방식을 이용하여 성능을 평가한 결과 변형 K-Means알고리즘이 K-Means 알고리즘보다 재현률과 F-Measure에서 $20{\%}$이상 향상된 결과를 얻을 수 있었으며 특정 주제 아래 관련 문서가 할당되는 클러스터링 성능이 우수함을 알 수 있었다.
수공구조물을 설계하기 위해서는 설계수문량을 빈도해석을 통해 산정할 수 있다. 빈도해석 중 지점빈도해석을 보완한 지역빈도해석을 적용하기 위해서는 군집분석을 통한 지역구분이 무엇보다 중요하다. 또한 스케일 성질(scaling property)은 강우의 시 공간적 특성을 지속기간별 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 강우의 IDF곡선을 제시할 수 있는 방법이다. 따라서 스케일 성질을 통해 군집된 지역에서의 강우자료에 적용하여 스케일 인자(scaling exponent)를 추정한 후 수문학적 동질성을 통계적 특성으로 설명하고자 한다. 본 연구를 수행하기에 앞서 군집 분석은 4개의 군집방법(평균연결법, Ward방법, Two-Step방법, K-means방법)을 적용하였고, 한강유역에 위치한 104개의 강우지점은 4개의 지역으로 구분하는 것이 적절하다고 판단되어 비계층적 방법인 k-means방법을 이용하여 지역을 구분하였다. 본 연구에서는 군집된 결과를 바탕으로 4개의 지역으로 구분된 지역에 포함된 강우지점을 대상으로 스케일 인자를 추정하고 수문학적 동질성을 통계적 방법으로 제시하고자 한다.
K-means는 알고리즘의 단순함과 효율적인 구현이 가능함으로 인해 군집화를 위해 현재까지 널리 사용되는 방법 중 하나이다. 하지만 K-means는 집단의 개수가 사전에 결정되어야 하는 근본적인 문제점이 있다. 이 논문에서는 BIC(Bayesian information criterion) 점수를 이용하여 효율적으로 집단의 개수를 추정할 수 있는 X-means 알고리즘을 확장한 두 가지 알고리즘을 제안한다. 제안한 방법은 기본적으로 X-means 방법을 따르면서 집단이 임의의 분산 행렬을 가질 수 있도록 함으로써 X-means 알고리즘이 원형 집단만을 허용함에 따른 over-fitting을 개선한다. 제안한 방법은 하나의 집단에서 시작하여 계속해서 집단을 나누어가는 하향식 방법으로, BIC score를 최대로 증가시키는 집단을 분할해 나간다. 제안한 알고리즘은 Modified X-means(MX-means)와 Generalized X-means(GX-means)의 두 가지로, 전자는 K-means 알고리즘을, 후자는 EM 알고리즘을 사용하여 현재 주어진 집단들에서 최적의 분할을 찾아낸다. MX-means는 GX-means보다 그 속도에서 앞서지만 집단들이 중첩 된 경우에는 올바른 집단을 찾아낼 수 없는 단점이 있다. GX-means는 실행 속도가 느린 단점이 있지만 집단들이 중첩된 경우에도 안정적으로 집단들을 찾아낼 수 있다. 이러한 점들은 일련의 실험을 통해서 확인할 수 있으며, 제안한 방법들이 기존의 방법들에 비해 나은 성능을 보임을 확인할 수 있다.
DNA칩의 유전자 발현 데이터의 통합적 분석을 위하여 매트랩을 기반으로 한 통합분석 프로그램을 구축하였다. 이 프로그램은 유전자 발현 분석을 위해 일반적으로 많이 쓰는 방법인 Hierarchical clustering(HC), K-means, Self-organizing map(SOM), Principal component analysis(PCA)를 지원하며, 이외에 Fuzzy c-means방법과 최근에 발표된 Singular value decomposition(SVD) 분석 방법도 지원하고 있다. 통합분석프로그램의 성능을 알아보기 위하여 효모의 포자형성(sporulation)과 정의 유전자발현 데이터를 사용하였으며, 각 분석 방법에 따른 분석 결과를 제시하였으며, 이 프로그램이 유전자 발현데이타의 통합적인 분석을 위해 효과적으로 사용될 수 있음을 제시하였다.
K-평균 군집분석이 가지는 두 가지 근본적인 어려움은 사전에 미리 군집 수를 정해야 하는 문제와 초기 군집중심에 따라 결과가 달라질 수 있는 문제이다. 본 연구에서는 이러한 문제를 해결하기 위한 자동화 K-평균 군집분석 절차를 제안하고, R을 이용하여 구현한 결과를 제공한다. 자동화 K-평균 군집분석에서 제안된 절차는 처음 단계로서 계층적 군집분석을 행한 후 이를 이용하여 군집 수와 초기 군집수를 자동으로 정하고, 다음 단계로 이 결과를 이용하여 K-평균 군집분석을 수행하는 방법을 택하였다. 처음 단계에서 이용된 계층적 군집분석 방법으로는 Ward의 군집분석을 한 후에 Mojena의 규칙을 이용하여 군집 수를 정하는 방법을 택하거나, 모형근거 군집분석방법을 수행한 후에 BIC 값을 이용하여 군집 수를 정하는 방법을 이용하였다. 제안된 자동화 K-평균 군집절차에는 대량자료의 분석에도 용이하게 이용될 수 있도록 반복된 표본추출 방법을 이용하여 군집 수 및 군집 중심을 구하는 절차를 포함하였다. 구현된 R 프로그램은 www.knou.ac.kr/ sskim/autokmeans.r에서 제공하고 있다.
클러스터링 기법은 데이터에 대한 특성에 따라 몇 개의 클러스터로 군집화 하는 계층적 클러스터링이나 분할 클러스터링 등 다양한 기법이 있는데 그 중에서 K-Means 알고리즘은 구현이 쉬우나 할당-재계산에 소요되는 시간이 증가하게 된다. 또한 초기 클러스터 중심이 임의로 설정되기 때문에 클러스터링 결과가 편차가 심하다. 본 논문에서는 클러스터링에 소요되는 시간을 줄이고 안정적인 클러스터링을 하기 위해 초기 클러스터 중심 선정 방법을 삼각형 높이를 이용하는 방법을 제안하고 비교 실험해 봄으로서 할당-재계산 횟수를 줄이고 전체 클러스터링 시간을 감소시키고자 한다. 실험결과로 평균 총소요시간을 보면 최대평균거리를 이용하는 방법은 기존 방법에 비해서 17.9% 감소하였고, 제안한 방법은 38.4% 감소하였다.
K-Means 알고리즘은 재배치 기법의 일종으로 K 개의 초기 클러스터중심(centroid)를 중심으로 K 개의 클러스터가 될 때까지 클러스터링을 반복하는 것이다. K-Means 알고리즘은 특성상 초기 클러스터 중심과 새롭게 생성된 클러스터 중심에 따라 클러스터링 결과가 달라진다. 본 논문에서는 K-Means Algorithm 의 초기 클러스터중심 선택 방법과 새로운 클러스터 중심 결정 방법을 개선한 변형 K-Means Algorithm을 제안한다. SMART 시스템에서 제안한 16가지 가중치 계산 방식에 의하여 두 알고리즘의 성능을 평가한 결과 제안한 변형 알고리즘이 재현률과 F-Measure 에서 20%이상 향상된 결과를 얻을 수 있었으며 특정 주제 아래 문서가 할당되는 클러스터링 성능이 우수하였다.
많은 유전자 정보와 그 부산물은 많은 방법을 통해 연구되어 왔다. DNA 마이크로어레이 기술의 사용은 많은 데이터를 가져왔으며, 이렇게 얻은 데이터는 기존의 연구 방법으로는 분석하기 힘들다. 본 논문에서는 많은 양의 데이터를 처리할 수 있게 하기 위하여 K-means 클러스터링 알고리즘을 이용한 분할 클러스터링을 제안하였다. 제안한 방법을 쌀 유전자로부터 나온 마이크로어레이 데이터에 적용함으로써 제안된 클러스터링 방법의 유용성을 검증하였으며, 기존의 K-means 클러스터링 알고리즘을 적용한 결과와 비교함으로써 제안된 알고리즘의 우수성을 확인할 수 있었다.
부호책 설계에 사용되는 초기 부호책을 얻기 위해 수정된 미소분리 방법을 제안한다. 제안된 방법은 다른 클래스에 비해 소속되는 학습벡터가 다수 소속되거나 자승오차가 작은 클래스에 대표벡터를 더 많이 할당한다는 원리를 적용한다. 기존 K-means 알고리즘과 참고문헌 (5)에서 제안한 방법을 적용하여 설계된 부호책의 성능을 평가할 때, 두 경우 모두 제안된 방법에 의해 얻어진 초기 부호책을 사용하는 것이 기존 미소분리 방법에 의한 초기 부호책을 사용하는 것보다 우수한 결과를 나타낸다.
본 논문에서는 색조 도플러 초음파 영상에서 K-Means 알고리즘을 적용하여 혈류 영역을 추출하는 방법을 제안한다. 제안된 방법에서는 ROI 영역을 추출하고, 추출된 ROI 영역에서 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완 동맥의 혈류 영역이 존재하는 사다리꼴 형태의 영역을 추출한다. 추출된 사다리꼴 형태의 영역에서 상완동맥의 혈류영역을 정확히 추출하기 위하여 K-Means 기반 양자화 기법을 적용한다. 실험에서 제안 된 방법은 현장 전문가의 검증을 거쳐 30건 중 28건 (93.3%)에서 혈류 영역을 성공적으로 추출하였다. 그리고 제안된 K-Means 기반 혈류 영역 추출 방법을 30개의 색조 도플러 초음파 영상에 적용하여 전문의가 제공한 상완동맥 혈류 영역과 제안된 방법을 비교 분석한 결과, 정확도가 평균적으로 94.27%로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.