• Title/Summary/Keyword: K-joint parameters

Search Result 682, Processing Time 0.05 seconds

The Effectiveness of Backward Gait Training on the Treadmill in Children With Spastic Diplegic Cerebral Palsy: A Pilot Study (트레드밀에서 뒤로걷기 훈련이 경직성 양하지 뇌성마비 아동의 보행에 미치는 영향: 사전 연구)

  • Kim, Sung-Gyung;Ryu, Young-Uk;Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.81-90
    • /
    • 2012
  • The aim of the current study was to assess the effectiveness of backward gait training on the treadmill in patients with spastic diplegic cerebral palsy (CP). Twelve patients with spastic diplegic CP participated in the study. An 8-week course of backward gait training was administered to the subjects for 3 days per week. Pre-intervention and post-intervention assessments of temporal-spatial gait parameters, the symmetry of the bilateral lower extremity weight bearing, and gross motor function were analyzed using motion analysis system, force plate, and Gross Motor Function Measurement (GMFM). There were significant improvements (p<.05) in the measures of both step length and right stance phase time. Joint kinematics showed increase in right hip abduction in initial contact and terminal swing, right hip external rotation and knee flexion in mid-swing, left ankle dorsiflexion in initial contact and terminal swing (p<.05). The symmetry of the bilateral lower extremity weight bearing and GMFM also significantly increased (p<.05). These findings indicate that backward gait training using a treadmill is beneficial for patients with spastic diplegic CP.

Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints (셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가)

  • Kang, Se Hyung;Hwang, Jae Hyun;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue life

  • Kong, C.D.;Bang, J.H.;Jeong, J.C.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-89
    • /
    • 2002
  • The aims of this study is to realize the structural design for development of a medium scale E-glass/epoxy composite wind turbine blade for a 750KW class horizontal axis wind turbine system. In this study, the various load cases specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads such as aerodynamic and centrifugal loads, loads due to accumulation of ice, hygro-thermal and mechanical loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade were peformed using tile finite element method(FEM). In the structural design, the acceptable blade structural configuration was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable in any various load cases Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design fond and the fatigue.

  • PDF

Thermo-mechanical analysis of road structures used in the on-line electric vehicle system

  • Yang, B.J.;Na, S.;Jang, J.G.;Kim, H.K.;Lee, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.519-536
    • /
    • 2015
  • On-line electric vehicle (OLEV) is a new eco-friendly transportation system that collects electricity from a power cable buried beneath the road surface, allowing the system to resolve various problems associated with batteries in electric vehicles. This paper presents a finite element (FE) based thermo-mechanical analysis of precast concrete structures that are utilized in the OLEV system. An experimental study is also conducted to identify materials used for a joint filler, and the observed experimental results are applied to the FE analysis. Traffic loading and boundary conditions are modeled in accordance with the related standards and environmental characteristics of a road system. A series of structural analyses concerning various test scenarios are conducted to investigate the sensitivity of design parameters and to evaluate the structural performance of the road system.

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi;Sarfarazi, Vahab;Lazemi, Hossein Ali
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.639-653
    • /
    • 2016
  • The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

Prediction of Shape Recovery for Ni-Ti SMA Wire after Drawing (Ni-Ti 형상기억합금 선재의 인발 공정 후 형상회복 예측에 관한 연구)

  • Kim, S.H.;Lee, K.H.;Lee, S.B.;Yeom, J.T.;Park, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.470-476
    • /
    • 2013
  • The aim of the current study was to predict shape recovery behavior of Ni-Ti shape memory alloy (SMA) wire after loading-unloading and after wire drawing. The superelasticity of SMA was analyzed by a hyper-elastic model for the Mullins effect using ABAQUS. Firstly, tensile tests and loading-unloading tests of the Ni-Ti SMA wire with a diameter 1.0 mm were performed using an MTS servo-hydraulic tester. The parameters for the Mullins effect were computed by ABAQUS based on curve-fitting of the loading-unloading test data. The proposed FE-model predicted the shape recovery of Ni-Ti SMA after wire drawing. Finally, the effectiveness of the model was verified by drawing experiments. The wire drawing experiments using the Ni-Ti SMA were conducted on a drawing machine(1ton, 50mm/s). In order to evaluate the shape recovery of Ni-Ti SMA, the drawn wires are annealed for 30min at $450^{\circ}C$.

Analytical and Numerical Study on Mechanical Behavior of Unit Cell of Pyramidal Truss Core Structures (피라미드 트러스 코어 단위셀의 기계적 특성에 관한 해석적 및 수치적 연구)

  • Kim, Sang-Woo;Lee, Young-Seon;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.623-631
    • /
    • 2011
  • Metallic sandwich panels based on a truss core structure have been developed for a wide range of potential applications with their lightweight and multi-functionality. Structural performance of sandwich panels can be predicted from the studies on mechanical behavior of a unit cell of truss core structures. Analytical investigations on the unit cell provide approximated guidelines for the design of overall core structures for a specific application in short time. In this study, the effects of geometrical parameters on mechanical behavior of a pyramidal shape of unit cell were investigated with analytical models. The unit cell with truss member angle of 45 degree was considered as reference model and other models were designed to have the same weight and projected area but different truss member angle. All truss members were assumed to be connected with pin joint in analytical models. Under the assumptions, the equivalent strength and stiffness of the unit cell under compressive and shear loads were predicted and compared. And finally, the optimum core member angle to have maximum mechanical property could be calculated and verified with FE analysis results.

Energy Harvesting in Multi-relay Multiuser Networks based on Two-step Selection Scheme

  • Guo, Weidong;Tian, Houyuan;Wang, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4180-4196
    • /
    • 2017
  • In this paper, we analyze average capacity of an amplify-and-forward (AF) cooperative communication system model in multi-relay multiuser networks. In contrast to conventional cooperative networks, relays in the considered network have no embedded energy supply. They need to rely on the energy harvested from the signals broadcasted by the source for their cooperative information transmission. Based on this structure, a two-step selection scheme is proposed considering both channel state information (CSI) and battery status of relays. Assuming each relay has infinite or finite energy storage for accumulating the energy, we use the infinite or finite Markov chain to capture the evolution of relay batteries and certain simplified assumptions to reduce computational complexity of the Markov chain analysis. The approximate closed-form expressions for the average capacity of the proposed scheme are derived. All theoretical results are validated by numerical simulations. The impacts of the system parameters, such as relay or user number, energy harvesting threshold and battery size, on the capacity performance are extensively investigated. Results show that although the performance of our scheme is inferior to the optimal joint selection scheme, it is still a practical scheme because its complexity is much lower than that of the optimal scheme.