• 제목/요약/키워드: K-joint parameters

검색결과 681건 처리시간 0.024초

유전 알고리듬을 이용한 매니퓰레이터 조인트의 마찰력 규명 및 실험적 검증 (Manipulator Joint Friction Identification using Genetic Algorithm and its Experimental Verification)

  • 김경호;박윤식
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1633-1642
    • /
    • 2000
  • Like many other mechanical dynamic systems, flexible manipulator systems experience stiction or sticking friction, which may cause input-dependent instabilities. Manipulator performance can be enha nced by identifying friction but it is hard and expensive to measure friction by direct and precise sensing of contact displacements and forces. This study addresses the problem of identifying flexible manipulator joint friction. A dynamic model of a two-link flexible manipulator based upon finite element and Lagrange's method is constructed. The dynamic model includes the effects of joint compliances and actuator dynamics. Friction is also incorporated in the dynamic model to account for stick-slip at the joints. Next, the friction parameters are to be determined. The identification problem is posed as an optimization problem to be solved using nonlinear programming methods. A genetic algorithm is used to increase the convergence rate and the chances of finding the global optimum. The identified friction parameters are experimentally verified and it is expected that the identification technique is applicable to a system parameter identification problem associated with a wide class of nonlinear systems.

Reliability based calibration of the capacity design rule of reinforced concrete beam-column joints

  • Thomos, George C.;Trezos, Constantin G.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.631-645
    • /
    • 2011
  • The capacity design rule for beam-column joints, as adopted by the EC8, forces the formation of the plastic hinges to be developed in beams rather than in columns. This is achieved by deriving the design moments of the columns of a joint from equilibrium conditions, assuming that plastic hinges with their possible overstrengths have been developed in the adjacent beams of the joint. In this equilibrium the parameters (dimensions, material properties, axial forces etc) are, in general, random variables. Hence, the capacity design is associated with a probability of non-compliance (probability of failure). In the present study the probability of non-compliance of the capacity design rule of joints is being calculated by assuming the basic variables as random variables. Parameters affecting this probability are examined and a modification of the capacity design rule for beam-column joints is proposed, in order to achieve uniformity of the safety level.

3차원 운동분석 시스템을 이용한 보행분석에 있어서 검사간의 재현도 (Intratester Reliability of 3 Dimensional Motion Analysis System on Normal Subjects by a Tester)

  • 이문숙;위향민
    • 대한물리치료과학회지
    • /
    • 제2권1호
    • /
    • pp.383-392
    • /
    • 1995
  • The purpose of this investigation was to determine the intratester reliability of measurements obtained with 3 Dimensional Motion Analysis System(3DMAS) by tester on normal subject. Twenty subjects between the ages of 9 and 29(x=22) were evaluated with 3DMAS using a test-retest reliability procedure after a familiarization session. Computerized 3DMAS was done with 4 50 - Hz CCD cameras connected to the ELITE system(B. T. S., Italy) and kinetic data were collected from the AMTI force platform(AMTI., U. S. A). Data were analyzed by the Eliclinic software to obtain gait parameters, joint angles and joint internal moment and power. Test-retest revealed intraclass correlation coefficients from .80 to .99. A series of paired t-tests revealed no significant differences between test and retest values. Finally, it was concluded that tester with 3DMAS could obtain reliable measurements with 3DMAS for determining kinetic, kinematic and gait parameters in normal subjects.

  • PDF

3 자유도 굴착기 부속 시스템의 기구학적 최적 설계와 기구학/동력학 성능 해석 (Kinematic optimal design and analysis of kinematic/dynamic performances of a 3 degree-of-freedom excavator subsystem)

  • 김희국;한동영;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제3권4호
    • /
    • pp.422-434
    • /
    • 1997
  • In this paper, a two-stage kinematic optimal design for a 3 degree of-freedom (DOF) excavator subsystem, which consists of boom, arm and bucket, is performed. The objective of the first stage is to find the optimal parameters of the joint-actuating mechanisms which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the second stage is to find the optimal link parameters which maximize the isotropic characteristic of the excavator subsystem throughout the workspace. It is illustrated that kinematic/dynamic performances of the kinematically optimized excavator subsystem have improved compared to those of original HE280 excavator, with respect to three performance indices such as maximum load handling capacity, maximum velocity capability, and acceleration capability.

  • PDF

On the Transforming of Control Space by Manipulator Jacobian

  • Fateh, Mohammad Mehdi;Farhangfard, Hasan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.101-108
    • /
    • 2008
  • The transposed Jacobian is proposed to transform the control space from task space to joint space, in this paper. Instead of inverse Jacobian, the transposed Jacobian is preferred to avoid singularity problem, short real time calculations and its generality to apply for rectangular Jacobian. On-line Jacobian identification is proposed to cancel parametric errors produced by D-H parameters of manipulator. To identify Jacobian, the joint angles and the end-effector position are measured when tracking a desired trajectory in task space. Stability of control system is analyzed. The control system is simulated for position control of a two-link manipulator driven by permanent magnet dc motors. Simulation results are shown to compare the roles of inverse Jacobian and transposed Jacobian for transforming the control space.

높은 굽 신발 보행 시 전면 접촉인솔이 보행 변수에 미치는 영향 (The Effect of Total Contact Inserts on the Gait Parameters During High-Heeled Shoes Walking)

  • 문곤성;김택훈
    • 한국전문물리치료학회지
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2011
  • The purpose of this study was to investigate the effect of high heeled shoes with the total contact insert (TCI) on the frontal plane of the joints for the lower extremity during the gait. Ten healthy females voluntarily participated in this study and the height of the high heeled shoes was 7 cm. A three-dimensional motion analysis system (VICON) and force plates were used to analyze the movements of the joints for the lower extremities. The results were as follows: There were no significant differences for the angle value on the event of the gait cycle in the maximum eversion and inversion of the ankle joint, the varus and valgus of the knee joint, and the adduction and abduction of the hip joint (p>.05). But, there was a significant difference or the range of motion in the ankle joint (p<.05). The value of ankle and knee moment with a TCI was less than the value for no TCI. And there were significant differences for the moment value of the maximum inversion and eversion on the ankle joint and for the maximum varus and valgus on the knee joint (p<.05). Therefore, a TCI would be effective in stabilizing the joints of the lower extremities and increasing the balance of a body to reduce the injure from a fall during the gait.

TBM 세그먼트 조립 특성에 따른 부재력 변화 연구 (A study on the member forces of segmental linings considering key segments)

  • 우승주;유충식
    • 한국터널지하공간학회 논문집
    • /
    • 제17권3호
    • /
    • pp.363-382
    • /
    • 2015
  • 본 연구는 수치해석을 통하여 TBM 세그먼트의 분할 수와 인접한 링의 이격각도가 라이닝의 부재력에 어떤 영향을 미치는 살펴보았다. 수치해석은 Midas civil 2012+ 프로그램을 사용하였고, 모델링은 2링빔 스프링 모델을 이용하였다. TBM 세그먼드 부재력은 다양한 요소에 의해 결정된다. 본 논문에서는 세그먼트 분할 수와 분포를 제외한 다른 요소인 이음부 스프링 계수, 지반반력계수를 통제하고 특정한 분할 수와 분할 특성을 통해 case를 선정함으로써 분할 수와 분포와 같은 분할 특성이 부재력에 미치는 영향을 분석하였다. 이로써 TBM 세그먼트 시공 설계시 구조적으로 유리하거나 불리한 이음부 특성을 확인할 수 있다.

임신 기간에 따른 임산부 보행의 운동학적 요인과 하지 관절모멘트 패턴 비료 (Comparison of Gait Patterns on Pregnant's Kinematic Factors and Lower-Limb Joint Moments During Pregnant Period)

  • 하종규;장영관
    • 산업경영시스템학회지
    • /
    • 제32권3호
    • /
    • pp.78-84
    • /
    • 2009
  • The purpose of this study was to compare gait patterns during pregnancy. Because of the changes in hormone levels and anatomical changes such as body mass, body-mass distribution, joint laxity, and musculotendinous strength that result from pregnancy, it was possible that there would be certain gait deviations associated with these changes. Three-dimensional gait analyses were performed from a self-selected pace, and six subjects(height : $163{\pm}5.3cm$, mass : $61.3{\pm}3.80kg$, $65.3{\pm}5.14kg$, $70.2{\pm}4.98kg$) participated in the three times(the early, middle and last years). 7 cameras(Proreflex MCU-240, Qualisys) and 2 force plates (Type 9286AA, Kistler) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D and Joint moments computed using inverse dynamics. In conclusion, pregnant women's gait patterns were changed during pregnancy period because pregnancy makes them physical changes. The main changes were joint moments and kinematic factors during pregnancy period. The pregnancy transformed normal gait pattern Into toe out position. Therefore, exercise programs to improve muscle activity were necessary where joint moments were small. The development of simulator should be studied for pregnant women's tailored shoes and accessories in future.

Friction Stir Spot Welding of AA5052 Aluminum Alloy and C11000 Copper Lap Joint

  • Prasomthong, Suriya;Sangsiri, Pradit;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.145-152
    • /
    • 2015
  • The article aims to apply a friction stir spot welding for producing the lap joint between AA5052 aluminum alloy and C11000 copper alloy. The dimension of the materials was 100 mm in length, 30 mm in width and 1.0 mm in thickness. The copper plate was set overlap the aluminum plate by 30 mm. The welding parameter was the rotating speed of 2500-4000 rpm, the pin inserting rate of 2-8 mm/min and the holding time of 6 sec. The mechanical properties test and the microstructure investigation were performed to evaluate the lap joint quality. The summarized results are as follows. The friction stir spot welding could produce effectively the lap joint between AA5052 and C11000 copper. Increase of the rotating speed and holding time directly affected to decrease the tensile shear strength of the lap joint. The optimized welding parameters in this study that indicated the tensile shear strength of 864 N was the rotating speed of 3500 rpm, the pin inserting rate of 6 mm/min and the holding time of 4sec. The experimental results also showed that the hardness of the weld metal was lower than that of the base materials.

지상라이다를 이용한 암반사면 불연속면거칠기에 대한 확률특성 분석 (Analysis of Random Properties for JRC using Terrestrial LiDAR)

  • 박성욱;박혁진
    • 지질공학
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 2011
  • 불연속면의 거칠기는 암반사변의 안정성 해석에서 고려되어야 하는 중요한 인자 중 하나로 특히 암반사변에 대한 확률론적 안정성 해석에서는 파괴확률의 결정에 지대한 영향을 미치는 확률변수이다. 확률변수로서의 거칠기의 특성을 파악하기 위해서는 다수의 거칠기 자료가 요구되나 기존의 육안조사는 조사위치나 시간적인 제약으로 인해 충분한 자료의 획득이 어려운 경우가 많다. 따라서 본 연구에서는 기존 육안조사가 가지는 조사위치 및 조사수량의 한계점을 극복하기 위하여 지상라이다를 활용하여 거칠기의 자료를 획득하고 분석을 수행하였다. 또한 절리면거칠기의 정량적인 산정을 위하여 지상라이다로부터 얻어진 수치자료에 대해 통계파라미터를 이용한 변환과정을 거쳐 절리면거칠기를 얻었다. 불연속면의 거칠기에 대한 확률특성인 평균, 표준편차, 분포함수에 대한 정보를 획득하였으며, 기존 육안검사방법에 비해 정량적인 많은 자료를 얻는데 있어 지상라이다가 유용한 것으로 판단되었다.