• Title/Summary/Keyword: K-epsilon turbulent model

Search Result 134, Processing Time 0.026 seconds

Computation of Turbulent Flows in Swirl Combustor (동축의 선회류들이 배합되는 연소기내 난류유동의 수치해석)

  • 백석철;김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.511-518
    • /
    • 1986
  • 본 연구에서는 난류모델로는 기존의 K-.epsilon.모델과 LPS방법으로 수정된 K-.epsilon. 모 델을, 수치적 Scheme으로는 Hybrid Difference Scheme과 Skew-upwind Difference Sc- heme을 사용하여 그 결과를 각각 비교하였다.

Numerical Simulation of Pipe Flow with an Obstacle by applying Turbulent Models (난류모형을 적용한 장애물이 있는 파이프내의 유동장 수치시뮬레이션)

  • Kwag Seung- Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.523-528
    • /
    • 2005
  • The flow analysis is made to simulate the turbulent flow in the pipe with an obstacle. The models used are k-$\epsilon$, k-$\omega$, Spalart-Allmaras and Reynolds. The structured grid is used for the simulation The velocity vector, the pressure contour, the change of residual along the iteration number and the dynamic head are simulated for the comparison of four example cases. For the analysis, the commercial code is used.

PTV velocity field measurements of flow around a triangular prism located behind a porous fence (다공성 방풍벽 뒤에 놓인 삼각 프리즘 주위 유동의 PTV 속도장 측정)

  • Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.708-715
    • /
    • 1998
  • The shelter effect of a porous wind fence on a triangular prism was experimentally investigated in a circulating water channel. A porous fence of porosity .epsilon.=38.5% was installed in front of the prism model. The fence and prism model were embedded in a turbulent boundary layer. The instantaneous velocity fields around the fence and prism model were measured by using the instantaneous velocity fields around the fence and prism model were measured by using the 2-frame PTV(Particle Tracking Velocimetry) system. By installing the fence in front of the prism, the recirculation flow region decreases compared with that of no fence case. The porous fence also decreases the mean velocity, turbulent intensity and turbulent kinetic energy around the prism. Especially, at the top of the prism, the turbulent kinetic energy is about half of that without the fence.

Numerical Analysis of Heat Transfer in Pulsating Turbulent Pipe Flow (원관내 맥동난류유동에서의 열전달 수치해석)

  • 박희용;이관수;김창기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1282-1289
    • /
    • 1990
  • A numerical solution for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform well heat flux. The k-.epsilon. turbulent model was adopted to describe turbulent characteristics. The results were given at following conditions ; Time-averaged Reynolds number equal to 10000 ; Strouhal number ranged from 0.0005 to 0.05 ; The peak velocity fluctuation varied from 20 to 80 percent of the mean velocity. It was found that the effect of pulsation on local heat transfer rate is greater at downstream than upstream and the heat transfer was increased or decreased according to the pulsating conditions.

The Improvement of the Heat Exchanger Performance by Shape Modifieation(II) (형상변화 에 의한 열교환기 의 열전달 성능 향상 (II))

  • 노승탁;이택식;강신형;이은현;송명호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.202-212
    • /
    • 1985
  • Numerical and experimental studies are presented for turbulent flows and heat transfer in annular channel with circumferential fins on the inner tube in a double pipe heat exchanger. Flow and heat transfer characteristics are periodically fully developed, and complex flow patterns are shown. Numerical calculations are executed by using modified TEACH-2E computer program based on the standard k-.epsilon. turbulence model. Mean velocity, turbulent kinetic energy, and Reynolds stress distributions are measured with the hot wire anemometer. Static pressures on the outer wall of the pipe are measured for three pitch-height ratios and several Reynolds numbers. Numerical predictions generally show reasonable results in comparison with experimental results. When the pitch-height ratio is about 5.0 and other geometric parameters are fixed in this paper, maximum heat transfer is achieved. Reattaching flow patterns appeared in this region. As the pitch between fins is increased beyond 5.0, mean Nusselt numbers are decreased and the pressure drop through one pitch almost remains.

Numerical Analysis of Rotating Channel Flow with an Anisotropic $k-\varepsilon$ Turbulence Model (비등방 $k-\varepsilon$ 난류모델에 의한 회전 덕트유동의 수치해석)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1046-1055
    • /
    • 1997
  • An anisotropic k-.epsilon. turbulence model for predicting the rotating flows is proposed with the simple inclusion of a new parameter dealing with the extra straining effects in the .epsilon.-equation. This model is employed to compute the effects of Coriolis forces on fully-developed flow in a rotating channel. The predicted results indicate that the present model captures fairly well the striking rotational-induced effects on the Reynolds stresses and the mean flow distributions, including the argumentation of turbulent transport on the unstable side (pressure surface) of the channel and its damping on the stable side (suction surface).

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Jinghan Wang;Chao Li;Yiqing Xiao;Jinping ou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.331-346
    • /
    • 2022
  • Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.

Three-dimensional analysis of the flow through an axial-flow fan (축류송풍기의 삼차원 유동장 해석)

  • Kim, Gwang-Yong;Kim, Jeong-Yeop;Jeong, Deok-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.541-550
    • /
    • 1997
  • Computational and experimental investigations on the three-dimensional flowfield through an automotive cooling fan are carried out in this work. Steady, incompressible, three-dimensional, turbulent flow through a rotating axial-flow fan is analyzed with Reynolds averaged Navier-Stokes equations and standard k-.epsilon. turbulence model. The governing equations are discretized with finite-volume approximations in non-orthogonal curvilinear coordinates. Computational static pressures on the casing wall agree well with the experimental data which are measured in this work. And, they are sensitive to the change of tip clearance. The flowfield is not significantly affected by the thickness of the blade. The k-.omega. model gives the static pressure rise on the casing wall which is similar to that with the k-.epsilon. model.

Numerical Study on the Turbulent Flow in the 180^{\circ}$ Bends Decreasing Cross-sectional Aspect Ratio (단면의 폭이 감소하는 180^{\circ}$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1056-1062
    • /
    • 2002
  • This paper reports the characteristics of the three dimensional turbulent flow in the 180 degree bends with decreasing cross-sectional area by numerical method. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number k-epsilon model and algebraic stress model. The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend because of the contraction of cross-sectional area. The rate of increase of turbulent kinetic energy through the bend are lower than that of mean flow. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Numerical study on flows within an shrouded centrifugal impeller passage (원심회전차 내부유도장에 관한 수치해석적 연구)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.