• Title/Summary/Keyword: K-epsilon turbulent model

Search Result 134, Processing Time 0.035 seconds

Flow Characteristics in a Clean Room after Divisional Filter Exchange (부분적인 필터교체에 따른 청정실내부의 유동특성)

  • 이재헌;박명식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2110-2121
    • /
    • 1993
  • A numerical investigation has been carried out for the flow characteristics after exchange of some filters from the original layer to the new low pressure loss layer with equal filtering efficiency. The solution domain includes upper plenum, filter layer, clean space, access panels, and lower plenum. The concept of the distributed pressure resistance was applied to describe the momentum loss in filter layer and access panels. The evolution of the flow field is simulated using the low Reynolds number k-.epsilon. over bar turbulent model and SIMPLE algorithm based on the finite volume method. As a result, after the exchange of filter layer the power requirement can be reduced by 8-9 percent. The results also demonstrate that the perpendicularity of the flow near access panels may become worse at new filter layer than origianl filter layer. But the situation can be recovered by adjusting the jopening ratio of access panels.

A Study of Thermal and flow Characteristics Induced by Fire in a Partial Enclosure (부분밀폐공간내에서 화재로 야기되는 열 및 유동특성에 관한 연구)

  • 박희용;한철희;박경우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1288-1300
    • /
    • 1994
  • Mathematical modeling and numerical calculation on the flow and thermal characteristics induced by fire in a partial enclosure are performed. The solution procedures include the Shvab-Zeldovich approximation for the physical transport equations, low Reynolds number k-.epsilon. model for the turbulent fluid flow and Discrete Ordinate method(DOM) to calculate the radiative heat transfer. PMMA(Polymethylmethacrylate) is adopted as a solid fuel. Two different cases are considered : combustions with and without gas radiation occuring in a open cavity for variable pyrolyzing location of PMMA. When the fire source is located at the left-wall, the flow region of flame gas is limited at the left-wall and ceiling and recirculation region of inlet gas is formulated at neat the floor. In case of neglecting the radiative heat transfer, more large flame size and higher temperature is predicted. It is essential to consider the radiative heat transfer for analysis of fire phenomenon.

Numerical Analysis on HVAC Characteristics of Train with non-uniform Interior Cross-section (비균일 단면을 가진 철도차량의 내부 열유동 해석)

  • Nam Seong-Won;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.685-689
    • /
    • 2004
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of HVAC(Heating, Ventilating and Air-Conditioning) for double' deck train. The HVAC system is installed under the roof of carbody. In the lay-out of HVAC system, air duct must be installed to supply air to 1st and 2nd floor respectively. The standard k-$\epsilon$ and LES models for turbulence and SIMPLE algorithm for pressure equation hased on finite volume method are used to solve the physic a] HVAC model. To assure convergence, QUICK scheme for momentum equation and the 2nd order upwind scheme for turbulent equations arc used. From the results of simulation, the temperature and velocity magnitude are also distributed uniformly in the interior of double-deck passenger car.

  • PDF

Numerical simulation of turbulent air-flow in a closed engine room with heat source in a ship (열원이 있는 밀폐된 선박 기관실에서의 난류기류에 관한 수치적 연구)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.100-107
    • /
    • 1998
  • Ventilation of the marine engine room is very important for the health of the workers as well as the nomal operation of machines. To find proper ventilation conditions of this engine room, numerical simulation with standard k-.epsilon. model was carried out. In the present study, the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with downword angle depresses recirculation flow, causing a strong steam in the wider space of the room. Ventilation and removal of the released heat are promoted with this pattern. There is a possibility of local extreme heating at the upper surface of engine when supply and exhaust ports of air are in bilateral symmetry. The effect of the increase of exhaust port area on ventilation decreases as the number of supply port increases.

  • PDF

Numerical Analysis on the Effect of High-Shear in a Rotor-Stator Mixer (Rotor-Stator Mixer 전단효과에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.39-48
    • /
    • 2019
  • The turbulent flow in the rotor-stator mixer is based on shear characteristics generated by the interaction of the stator with the rotor rotating at high speed. In this study, the flow characteristics analysis of the unsteady state generated by the interaction of the rotor and the stator in the prototype model of the emulsion-fuel related mixer development was performed with the MRF and SMM by applying the ANSYS FLUENT $k-{\varepsilon}$ (RKE) turbulence model. The behavior and shear characteristics of the flow particles generated at the interface between the designed rotor and stator, and trends such as velocity distribution and turbulence eddy dissipation, were predicted and verified using the CFD analysis.

Uncertainties In Base Drag Prediction of A Supersonic Missile (초음속 유도탄 기저항력 예측의 불확실성)

  • Ahn H. K.;Hong S. K.;Lee B. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.47-51
    • /
    • 2004
  • Accurate Prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Lomax(B-L), Spalart-Allmaras(S-A), $\kappa-\epsilon$, $\kappa-\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control (ins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

  • PDF

Theoretical and Computation Analysis on the Pressure Drop in the Cyclone Dust Collector (사이클론 집진장치 내부의 압력강하에 대한 전산해석과 이론식의 결과 비교)

  • Hyun, Daegeun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.263-268
    • /
    • 2014
  • Using the CFD method, the pressure drop in 6 cyclone dust collectors of different shape were calculated. And the results were compared with results of the conventional theories. Equations of Shepherd and Lapple (1939, 1940), First (1950), Alexander (1949), Stairmand (1949), Barth (1956) were used in the theoretical calculation. In CFD calculations, we used standard k-epsilon model for analysis of turbulent flow, fluid is $25^{\circ}C$ air, the velocity at inlet is 10 m/s and the temperature is $25^{\circ}C$. In CFD analysis results, the pressure distributions along the flow showed similar patterns in different cyclone shapes. But the pressure drop distributions estimated on the conventional theories had big difference in different cyclone shapes. Only First's theory and CFD analysis showed similar results.

Numerical Analysis of Flow around Bow Rudder (선수 타 주위 유동의 수치적 해석)

  • Koo, Bon-Guk;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.170-176
    • /
    • 2020
  • In this study, the lift, drag and moments of the rudder that influences on the maneuvering ships directly has been investigated using CFD(Computational Fluid Dynamics). One of typical ship rudders effecting on the forces and moments is the bow rudders during maneuvering on the sea. Thus, the forces and moments should be investigated for the bow of ship rudder. Among the IFS bow rudder series, the balance IFS 54 BR 15 is used for study. As a turbulent model, standard k-epsilon is applied to this study. The hydrodynamic of the bow rudder, especially lift, drag and moment coefficients are calculated for the different angles of attack. The angles of attack between water flow and rudder are presented in cases including 0°, 5°, 10°, 15°, 20°, 25°, 30° and 35°. The results of calculation for those influences on maneuvering performance of ships are compared with the relevant results of the previous experimental studies.

Numerical Simulation of Particle Deposition on a Wafer Surface (웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션)

  • 명현국;박은성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Duc;Duong Ngoc-Hai;Park Wam-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.144-151
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard $\kappa-\epsilon$, two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derive

  • PDF