• Title/Summary/Keyword: K-epsilon turbulent model

Search Result 134, Processing Time 0.018 seconds

Numerical calculations of flow and heat transfer in an axisymmetric reciprocating engine at it's suction and compression stage (축대칭 왕복 엔진의 흡입 및 압축과정에서 유동 및 열전달의 수치해석)

  • 강신형;이창훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.395-408
    • /
    • 1987
  • Turbulent flows in an axisymmetric reciprocating engine are numerically simulated at it's suction and compression stage. Amounts of heat transfer through the wall of the cylinder are also estimated. k-.epsilon. turbulence model is adopted and the law of the wall is applied at grid-points near the wall. More than 40 * 40 grids are reguried to reasonably predict flows and the 3-level finite difference scheme for the time derivative term appears to be effective rather than the 2-level scheme. Calculated mean velocity distributions shows good agreements with an available experimental data. The program reasonably simulates flow patterns and pressures throughout the suction and the compression stages of the reciprocating engine. Predicted intensities of turbulence are still deviated from measured data. Further researches for turbulence modeling are expected.

Numerical Simulation for Model Gas Turbine Combustor (모형 가스터빈 연소기의 수치해석적 연구)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.

Numerical Analysis for the Internal Flow of Thermal Vapor Compressor with real gas equation of state (실제기체 상태방정식을 적용한 열압축기 내부유동에 대한 수치해석)

  • Kang, Wee-Kwan;Choi, Du-Yeol;Shin, Jee-Young;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.216-223
    • /
    • 2011
  • TVC is a kind of ejector which entrains low pressure working fluid by using the high pressure working fluid. While most papers relating with ejectors treat the working fluid as an ideal gas for convenience, the fluid doesn't behave as the ideal gas when phase change occurs. In this study, numerical analysis is conducted by applying Redlich-Kwong equation of state instead of ideal gas equation of state. Two turbulent models are compared for the better prediction and SST k-${\omega}$ model is preferred rather than realizable k-${\epsilon}$ model by comparison. Energy loss at the diffuser inlet and throat using the real gas equation of state is relatively greater than that using ideal gas law. For the real gas case, pressure increase due to shock train at the diffuser outlet is relatively smaller than the ideal gas case, but both cases have the same pressure increase due to a pseudo shock.

A Numerical Study on Flow in a Water Jet (워터 제트내 유동장에 관한 수치해석 연구)

  • Kim, Ill-Soo;Park, Chang-Eun;Kim, Dae-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.27-32
    • /
    • 1998
  • This paper presents the development of a two-dimensional model for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard k-$\epsilon$ model was solved employing a general thermofluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

Numerical Analysis on Heat Transfer and Fluid flow of Brake Shoe for Freight Car (화물열차용 제륜자의 열유동 해석)

  • 남성원
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.123-128
    • /
    • 2001
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of brake shoe for freight car. High order up-wind scheme for governing equations, k-epsilon turbulent model and SIMPLEC algorithm based on finite volume method are used to solve the physical shoe model. The governing equations are solved by TDMA(Tri-Diagonal Matrix Algorithm) with line-by-line method and block correction. From the results of simulation, the characteristics of cooling pattern is strongly affected by the velocity of train and the material of shoe. The face lift of shoe affects on the temperature distribution of rear surface of shoe as well as the front surface of that. Due to the grooves in shoe, it will be expected to cool the frictional heat and result in the reduction of maintenance efforts.

  • PDF

Assessment of Optimization Methods for Design of Axial-Flow Fan (축류송풍기 설계를 위한 최적설계기법의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

A Numerical Study on the Off-Design Performance of Three-Dimensional Transonic Centrifugal Compressor Diffusers (3차원 천음속 원심압축기 디퓨저의 탈설계 성능에 관한 수치적 연구)

  • Kim, Sang Dug;Song, Dong Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.134-140
    • /
    • 1999
  • A three-dimensional CSCM upwind flux difference splitting Navier-stokes code with two-equation turbulence models was developed to predict the transonic flows in centrifugal compressor diffuser. The k-$\epsilon$ model of Abe et al. performed well in predicting the pressure distribution in the shock wave/turbulent boundary-layer interaction. Three turbulence models predicted the similar distribution of static pressure through the diffuser and showed a good agreement with the experimental results. The secondary flows in the corner were predicted well by these turbulence models. The pressure increase before the throat of the diffuser vane is important for the overall pressure recovery. As the mass flow rate increased the blockage decreased at the throat. The pressure coefficient distribution through the diffuser depended on the throat blockage not on the rotational speed of the impeller.

  • PDF

Comparison of Various Turbulence Models for the Calculation of Plane of Symmetry Flows (대칭단면에서의 난류모형 비교)

  • 손창현;최도형;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1052-1060
    • /
    • 1989
  • Using a vortex stretching invariant term, the two-layer k-.epsilon. model has been modified to account for the extra staining of turbulence due to the mean-flow convergence and divergence. The calculations of turbulent boundary layers in a plane of symmetry are compared for experimental cases which are an axisymmetric body at an incidence of 15.deg.. The comparisons between the calculations and experimental data show that additional modifications to the dissipation rate equation have brought the significant improvement to the prediction of plane of symmetry boundary layers in the strong mean-flow convergence and divergence.

Numerical Heat Transfer and Fluid Flow of Brake Disk-lining for Rolling Stock (철도차량용 제동 디스크-라이닝의 열유동 해석)

  • 남성원;조장형
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.93-98
    • /
    • 1999
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of brake disk-lining for rolling stock. Multiple rotational reference frame, k-epsilon turbulent model and SIMPLE algorithm based on finite volume method are used to solve the physical disk-lining model. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction, From the results of simulation, the characteristics of cooling pattern is strongly affected by the grooves in lining. The face lift of lining affects on the temperature distribution of rear surface of lining as well as the front surface of that. Due to the grooves in lining, it will be expected to extend the maintenance life circle of lining.

  • PDF

Combined raidation-forced convection in a circular tube flow (원관내 유동에서의 복사 및 강제대류 열전달에 관한 연구)

  • 임승욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1652-1660
    • /
    • 1990
  • Combined radiative-convective heat transfer in a hot gas tube flow has been investigated numerically and experimentally. In the numerical analysis, a standard k-.epsilon. model is used for the evaluation of turbulent shear stresses and spherical harmonics method with the Weighted Sum of Gray Gases Model for the solution of radiative transfer equation. In the experimental study measured are the velocity and temperature of the hot gas flow generated by the propane gas combustion, and tude wall heat flux distribution. Numerical results are compared with experimental ones and it is confirmed that P-3 provides quite reliable results in the analysis of the combined radiation-convection system.