• Title/Summary/Keyword: K-bracing

Search Result 191, Processing Time 0.022 seconds

Earthquake behavior of stiffened RC frame structures with/without subsoil

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.571-585
    • /
    • 2008
  • The purpose of this study is to investigate the linear earthquake behavior of the frame structures including subsoil with different stiffening members and to compare the results of each frame considered. These comparisons are made separately for displacement, bending moments and axial forces for frames with different storey and bay numbers for the time history and the modal analyses. The results of both methods are also compared. The results of the frames with subsoil are also compared with the results of the frames without subsoil. It is concluded that all stiffening members considered in this study decrease the lateral displacement of the frame and the bending moment of the columns and increase the axial force in the columns and that configuration of the bracing members come out to be an important parameter in braced frames since the frames with the same type of bracing give different results depending on configuration. It is also concluded that, in general, the absolute maximum displacements of the frames modeled with subsoil are larger than those of the frames modeled without subsoil.

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

Safety Evaluation of a Bridge Using Round Piles Connected Laterally to Each Other (원형강 파일이 횡방향 상호 연결된 가설교량의 안전성 평가)

  • Kim, Yong-On;Paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.98-106
    • /
    • 2006
  • The substructure of temporary bridges used during the construction period of main bridges needs to be simple and strong at the same time so that it doesn't block running water. When the water flow is hindered by sub-structure of the bridges, as it happens when H beams with bracing are used, either the water floods or the bridge gets damaged. Therefore, using round beams for the substructure and connect them together is a preventive choice considering the intensive raining in the summer. The bridges using round beams for the substructure have also benefited by fast construction because of fewer bracing and in-situ welding. Because the round-pile-connecting method is relatively new, the safety evaluation of the constructed bridge is an essential procedure before being used in the field. The field evaluation of a bridge including the vehicle loading test and moving load analysis has been conducted and the results showed the safety requirement is satisfied.

Recentering X-Braced Steel Frames Using Superelastic Shape Memory Alloy (초탄성 형상기억합금을 이용한 원상 복원 X형 철골 가새 골조)

  • Lee, Sung Ju;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.109-119
    • /
    • 2018
  • In this paper a systematic numerical analysis is performed to obtain the energy dissipation and re-centering capacities of diagonal steel braced frames subjected to cyclic loading. This diagonal steel bracing systems are fabricated with super-elastic SMA (Shape Memory Alloy) braces in order to develop a recentering seismic resistance system without residual deformation. The three-dimensional nonlinear finite element models are constructed to investigate the horizontal stiffness, drifts and failure modes of the re-centering bracing systems.

A Study on a Repair Technique for a Reinforced Concrete Frame Subjected to Seismic Damage Using Prestressing Cable Bracing

  • Lee, Jin Ho;EI-Ganzory, Hisham
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • The proposed building upgrading technique employs prestressing cables to function as bracing to improve the seismic performance during future events. A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is assessed and upgraded using the proposed technique. Both existing and upgraded buildings are evaluated in regard of seismic performance parameters performing static lateral load to collapse analysis and dynamic nonlinear time history analysis as well. To obtain realistic comparison of seismic performance between existing and upgraded frames, each frame is subjected to its critical ground motion that has strength demand exceeding the building strength supply. Furthermore, reliability of static lateral load to collapse analysis as a substitute to time history analysis is evaluated. The results reveal that the proposed upgrading technique improves the stiffness distribution compared to the ideal distribution that gives equal inter-story drift. As a result, the upgraded building retains more stories that contribute to energy dissipation. The overall behavior of upgraded building beyond yield is also enhanced due to the gradual change of building stiffness as the lateral load increases.

  • PDF

An Experimental Study on Resisting Force of Scaffolding Frames using Buckled Pipe

  • Na, Young-Chan;Son, Ki-Sang
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • There are many structural problems when the scaffolding frame is applied to a construction site contractor may use a used pipe or buckled pipe which they lended them from commercial firms without any inspection of those materials even though they have been used and exposed to weather for a long times. Therefore, they should be checked of their current capacity, comparing with the original one so that construction contractor can apply their capacity to a temporary frame depending on the site situation against collapsion of those. This study is mainly focused on the behavior of a scaffolding frame using prebuckled pipes. Additionally, standard frame with bracing and without bracing case are also tested for comparing with the prebuckled case. Prebuckled case has its capacity less approximately 20 % than the standard frame.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.

Assessment of cyclic behavior of chevron bracing frame system equipped with multi-pipe dampers

  • Behzadfar, Behnam;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.303-313
    • /
    • 2020
  • Spacious experimental and numerical investigation has been conducted by researchers to increase the ductility and energy dissipation of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy dissiption, is the use of energy-absorbing systems. In this regard, the cyclic behavior of a chevron bracing frame system equipped with multi-pipe dampers (CBF-MPD) was investigated through finite element method. The purpose of this study was to evaluate and improve the behavior of the CBF using MPDs. Three-dimensional models of the chevron brace frame were developed via nonlinear finite element method using ABAQUS software. Finite element models included the chevron brace frame and the chevron brace frame equipped with multi-pipe dampers. The chevron brace frame model was selected as the base model for comparing and evaluating the effects of multi-tube dampers. Finite element models were then analyzed under cyclic loading and nonlinear static methods. Validation of the results of the finite element method was performed against the test results. In parametric studies, the influence of the diameter parameter to the thickness (D/t) ratio of the pipe dampers was investigated. The results indicated that the shear capacity of the pipe damper has a significant influence on determining the bracing behavior. Also, the results show that the corresponding displacement with the maximum force in the CBF-MPD compared to the CBF, increased by an average of 2.72 equal. Also, the proper choice for the dimensions of the pipe dampers increased the ductility and energy absorption of the chevron brace frame.

The Use of Bracing Systems with MR Dampers in Super Tall Buildings

  • Aly, Aly Mousaad
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • High-rise buildings are increasingly viewed as having both technical and economic advantages, especially in areas of high population density. Increasingly taller buildings are being built worldwide. Increased heights entail increasing flexibility, which can result in serviceability problems associated with significant displacements and accelerations at higher floors. The purpose of this paper is to present the concept of a versatile vibration control technology (MR dampers with bracings) that can be used in super tall buildings. The proposed technology is shown to be effective, from a serviceability point of view, as well as resulting in dramatically reduced design wind loads, thus creating more resilient and sustainable buildings.

A Study of Exercise treatment based on Schroth method of Idiopathic Scoliosis (특발성 척추 측만증(Idiopathic Scoliosis)애 대한 Schroth 운동요법에 대한 고찰)

  • Yeom, Do-Sung;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.5 no.2
    • /
    • pp.181-191
    • /
    • 2010
  • Current treatment for adolescent idiopathic scoliosis(AIS) consists of three phases: observation, bracing, and surgery. Although there are many nonsurgical treatment(bracing, electrical stimulation, exercise, manipulation, acupuncture, etc), their effect is still controversial. In many paper, Schroth method was reported good immediate response to conservative care, which could be considered a sign of good prognosis. Schroth method became effective thai specialists in physiotherapy for spinal deformities teach the patient how to perform a routine of 'curve pattern' specific exercises with the purpose to facilitate the correction of the asymmetric posture and to teach the patient to maintain the corrected posture in dally activities. This Principles of correction exercise treatment are based on those developed by the German physiotherepist K. Schroth.

  • PDF