• Title/Summary/Keyword: K-Nearest Neighbors

Search Result 198, Processing Time 0.027 seconds

Corpus of Eye Movements in L3 Spanish Reading: A Prediction Model

  • Hui-Chuan Lu;Li-Chi Kao;Zong-Han Li;Wen-Hsiang Lu;An-Chung Cheng
    • Asia Pacific Journal of Corpus Research
    • /
    • v.5 no.1
    • /
    • pp.23-36
    • /
    • 2024
  • This research centers on the Taiwan Eye-Movement Corpus of Spanish (TECS), a specially created corpus comprising eye-tracking data from Chinese-speaking learners of Spanish as a third language in Taiwan. Its primary purpose is to explore the broad utility of TECS in understanding language learning processes, particularly the initial stages of language learning. Constructing this corpus involves gathering data on eye-tracking, reading comprehension, and language proficiency to develop a machine-learning model that predicts learner behaviors, and subsequently undergoes a predictability test for validation. The focus is on examining attention in input processing and their relationship to language learning outcomes. The TECS eye-tracking data consists of indicators derived from eye movement recordings while reading Spanish sentences with temporal references. These indicators are obtained from eye movement experiments focusing on tense verbal inflections and temporal adverbs. Chinese expresses tense using aspect markers, lexical references, and contextual cues, differing significantly from inflectional languages like Spanish. Chinese-speaking learners of Spanish face particular challenges in learning verbal morphology and tenses. The data from eye movement experiments were structured into feature vectors, with learner behaviors serving as class labels. After categorizing the collected data, we used two types of machine learning methods for classification and regression: Random Forests and the k-nearest neighbors algorithm (KNN). By leveraging these algorithms, we predicted learner behaviors and conducted performance evaluations to enhance our understanding of the nexus between learner behaviors and language learning process. Future research may further enrich TECS by gathering data from subsequent eye-movement experiments, specifically targeting various Spanish tenses and temporal lexical references during text reading. These endeavors promise to broaden and refine the corpus, advancing our understanding of language processing.

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.

Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan) (EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가)

  • Bae, Jang-Han;Kim, Soochan;Kaewkannate, Kanitthika;Jun, Min-Ho;Kim, Jaeuk U.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan) is a non-invasive and simple method to find the physio-pathological information inferred by electric current response with respect to low direct current applied between remote sites of the body. Although a few EIS-based devices for diagnosing diabetes were commercialized, they were not successful in offering clinical validity nor in confirming diagnostic principle. In this study, we measured the voltage responses of diabetic patients and normal subjects with a commercialized EIS device to test the usefulness of EIS in screening diabetes. For this purpose, voltage was measured between pairs of electrodes contacted at both palm, both soles of the feet and left and right forehead above both eyes. After feature extraction of voltage signals, the AUC (area under the curve) between the two groups was calculated and we found that seven variables were appropriately shown above 60% of accuracy. In addition, we applied the k-NN (k-nearest neighbors) method and found that the accuracy of classification between the two groups reached the accuracy of 76.2%. This result implies that the voltage response analysis based on EIS has potential as a diabetics screening method.

Implementation of DTW-kNN-based Decision Support System for Discriminating Emerging Technologies (DTW-kNN 기반의 유망 기술 식별을 위한 의사결정 지원 시스템 구현 방안)

  • Jeong, Do-Heon;Park, Ju-Yeon
    • Journal of Industrial Convergence
    • /
    • v.20 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • This study aims to present a method for implementing a decision support system that can be used for selecting emerging technologies by applying a machine learning-based automatic classification technique. To conduct the research, the architecture of the entire system was built and detailed research steps were conducted. First, emerging technology candidate items were selected and trend data was automatically generated using a big data system. After defining the conceptual model and pattern classification structure of technological development, an efficient machine learning method was presented through an automatic classification experiment. Finally, the analysis results of the system were interpreted and methods for utilization were derived. In a DTW-kNN-based classification experiment that combines the Dynamic Time Warping(DTW) method and the k-Nearest Neighbors(kNN) classification model proposed in this study, the identification performance was up to 87.7%, and particularly in the 'eventual' section where the trend highly fluctuates, the maximum performance difference was 39.4% points compared to the Euclidean Distance(ED) algorithm. In addition, through the analysis results presented by the system, it was confirmed that this decision support system can be effectively utilized in the process of automatically classifying and filtering by type with a large amount of trend data.

Performance Comparison of Automatic Classification Using Word Embeddings of Book Titles (단행본 서명의 단어 임베딩에 따른 자동분류의 성능 비교)

  • Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.307-327
    • /
    • 2023
  • To analyze the impact of word embedding on book titles, this study utilized word embedding models (Word2vec, GloVe, fastText) to generate embedding vectors from book titles. These vectors were then used as classification features for automatic classification. The classifier utilized the k-nearest neighbors (kNN) algorithm, with the categories for automatic classification based on the DDC (Dewey Decimal Classification) main class 300 assigned by libraries to books. In the automatic classification experiment applying word embeddings to book titles, the Skip-gram architectures of Word2vec and fastText showed better results in the automatic classification performance of the kNN classifier compared to the TF-IDF features. In the optimization of various hyperparameters across the three models, the Skip-gram architecture of the fastText model demonstrated overall good performance. Specifically, better performance was observed when using hierarchical softmax and larger embedding dimensions as hyperparameters in this model. From a performance perspective, fastText can generate embeddings for substrings or subwords using the n-gram method, which has been shown to increase recall. The Skip-gram architecture of the Word2vec model generally showed good performance at low dimensions(size 300) and with small sizes of negative sampling (3 or 5).

Calibration of Portable Particulate Mattere-Monitoring Device using Web Query and Machine Learning

  • Loh, Byoung Gook;Choi, Gi Heung
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.452-460
    • /
    • 2019
  • Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

Building Domain Ontology through Concept and Relation Classification (개념 및 관계 분류를 통한 분야 온톨로지 구축)

  • Huang, Jin-Xia;Shin, Ji-Ae;Choi, Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.562-571
    • /
    • 2008
  • For the purpose of building domain ontology, this paper proposes a methodology for building core ontology first, and then enriching the core ontology with the concepts and relations in the domain thesaurus. First, the top-level concept taxonomy of the core ontology is built using domain dictionary and general domain thesaurus. Then, the concepts of the domain thesaurus are classified into top-level concepts in the core ontology, and relations between broader terms (BT) - narrower terms (NT) and related terms (RT) are classified into semantic relations defined for the core ontology. To classify concepts, a two-step approach is adopted, in which a frequency-based approach is complemented with a similarity-based approach. To classify relations, two techniques are applied: (i) for the case of insufficient training data, a rule-based module is for identifying isa relation out of non-isa ones; a pattern-based approach is for classifying non-taxonomic semantic relations from non-isa. (ii) For the case of sufficient training data, a maximum-entropy model is adopted in the feature-based classification, where k-NN approach is for noisy filtering of training data. A series of experiments show that performances of the proposed systems are quite promising and comparable to judgments by human experts.

Prediction of Divided Traffic Demands Based on Knowledge Discovery at Expressway Toll Plaza (지식발견 기반의 고속도로 영업소 분할 교통수요 예측)

  • Ahn, Byeong-Tak;Yoon, Byoung-Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.521-528
    • /
    • 2016
  • The tollbooths of a main motorway toll plaza are usually operated proactively responding to the variations of traffic demands of two-type vehicles, i.e. cars and the other (heavy) vehicles, respectively. In this vein, it is one of key elements to forecast accurate traffic volumes for the two vehicle types in advanced tollgate operation. Unfortunately, it is not easy for existing univariate short-term prediction techniques to simultaneously generate the two-vehicle-type traffic demands in literature. These practical and academic backgrounds make it one of attractive research topics in Intelligent Transportation System (ITS) forecasting area to forecast the future traffic volumes of the two-type vehicles at an acceptable level of accuracy. In order to address the shortcomings of univariate short-term prediction techniques, a Multiple In-and-Out (MIO) forecasting model to simultaneously generate the two-type traffic volumes is introduced in this article. The MIO model based on a non-parametric approach is devised under the on-line access conditions of large-scale historical data. In a feasible test with actual data, the proposed model outperformed Kalman filtering, one of a widely-used univariate models, in terms of prediction accuracy in spite of multivariate prediction scheme.

Isolation and Taxonomical Characterization of Streptomyces sp. JR-24 with Antibacterial Activity of Bacterial Leaf Spot of Pepper (Xanthomonas axonopodis pv. vesicatoria) (고추 세균성 점무늬병원균(Xanthomonas axonopodis pv. vesicatoria)의 항균활성 Streptomyces sp. JR-24 균주의 분리 및 분류학적 특성)

  • Han, Song-Ih;Lee, Hyo-Jin;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.359-365
    • /
    • 2010
  • Fifty Actinobacteria strains were isolated from rhizosphere soil of Sasa borealis. In the course of screening for antibacterial activity against bacterial leaf spot of pepper (Xanthomonas axonopodis pv. vesicatoria) of isolates, 12 isolates showed strong antibiotic activity. Basis on the 16S rRNA gene sequence, they were belonging to Streptomyces cluster II. Strain JR-24 exhibited strong antibiotic activity against X. axonopodis pv. vesicatoria, had a minimum inhibitory concentration of 10 ${\mu}l$/disc. The strain JR-24 was most closely related to Streptomyces galbus $DSM40089^T$ (98.1%), Streptomyces longwoodensis $LMG20096^T$ (98%) and Streptomyces capoamus $JCM4734^T$ (97.8%). When assayed with the API 20NE and 50 CHE kit, it is positive for utilization of L-arabinose, D-fructose, D-glucose, D-galactose and hydrolysis of gelatin, protein, starch. The strains contained iso-$C_{14:0}$ (25.93%), iso-$C_{15:0}$ (10.13%), anteiso-$C_{15:0}$ (19.29%) and iso-$C_{16:0}$ (20.35%) as major fatty acids and MK-9 (H4), MK-9 (H6), and MK-9 (H8) as the isoprenoid quinone. Strain JR-24 was suggested new species of genus Streptomyces by nearest neighbors of genotypic relationships and phenotypic characterization. This study was important to microbial resources investigation for environment-friendly agriculture.