본 논문에서는 퍼지 k-NN과 reconstruction error에 기반을 둔 feature selection을 이용한 lazy 분류기 설계를 제안하였다. Reconstruction error는 locally linear reconstruction의 평가 지수이다. 새로운 입력이 주어지면, 퍼지 k-NN은 local 분류기가 유효한 로컬 영역을 정의하고, 로컬 영역 안에 포함된 데이터 패턴에 하중 값을 할당한다. 로컬 영역과 하중 값을 정의한 우에, feature space의 차원을 감소시키기 위하여 feature selection이 수행된다. Reconstruction error 관점에서 우수한 성능을 가진 여러 개의 feature들이 선택 되어 지면, 다항식의 일종인 분류기가 하중 최소자승법에 의해 결정된다. 실험 결과는 기존의 분류기인 standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees와 비교 결과를 보인다.
인터넷의 확산과 더불어 엄청난 사용자의 증가는 인터넷을 단순히 정보 검색의 대상으로만 삼는 것이 아니라 일반인들의 여가 문화를 즐기는 장이 되어가고 있다. 이와 같은 요구로 감정기반 문서 검색 및 분류 시스템을 제안한다. 이 시스템을 ECRAS라고 부른다. 감정 성분 추출은 로젯의 시소러스와 워드넷을 통해 이루어졌다. 감정 성분을 추출한 문서는 k-NN 기법을 기반으로 검색을 수행한다.
이 연구의 목적은 사건을 연구대상으로 하는 사건트래킹 기법이 과연 최신 사건 정보를 검색함에 있어 기존의 정보필터링 기법보다 성능이 우수한가를 살펴보는 데 있다. 따라서 이 연구에서는 특정 사건에 관한 최신 기사를 보다 효과적으로 검색하여 제공하는 기법을 찾아내기 위하여 kNN(k-Nearest Neighbors) 분류기를 응용한 사건트래킹 기법과 질의기반 정보필터링 기법을 사용하여 사건검색 실험을 수행한 후 두 기법의 검색 성능을 비교하였다. 사건트래킹 실험은 초기의 고정 학습문서 집합을 사용한 사건트래킹과 트래킹 과정에서 변화하는 동적 학습문서 집합을 사용한 사건트래킹의 두 가지 방법으로 수행되었다. 정보필터링 실험도 초기질의를 사용한 정보 필터링과 필터링 과정에서 계속 수정되는 질의를 사용한 정보필터링의 두 가지 방법으로 수행되었다. 실험 결과 사건트래킹 기법에서는 고정 학습문서 집합을 사용한 경우가 동적 학습문서 집합을 사용한 경우보다 더 우수한 성능을 보였으며, 정보필터링 기법에서는 초기질의를 사용한 경우가 수정질의를 사용한 경우보다 더 좋은 성능을 보였다. 또한 고정 학습문서 집합을 사용한 사건트래킹과 초기질의를 사용한 정보필터링을 비교한 결과 정보필터링 기법이 사건트래킹 기법에 비해 더 좋은 사건검색 성능을 보이는 것으로 나타났다.
본 논문은 이동전화 (Cellular phone)를 통해 실시간으로 습득된 음성으로부터 사람의 감성 상태를 평상 혹은 화남으로 인식할 수 있는 음성 감성인식 시스템을 제안하였다. 일반적으로 이동전화를 통해 수신된 음성은 화자의 환경 잡음과 네트워크 잡음을 포함하고 있어 음성 신호의 감성특정을 왜곡하게 되고 이로 인해 인식 시스템에 심각한 성능저하를 초래하게 된다. 본 논문에서는 이러한 잡음 영향을 최소화하기 위해 비교적 단순한 구조와 적은 연산량을 가진 MA (Moving Average) 필터를 감성 특정벡터에 적용해서 잡음에 의한 시스템 성능저하를 최소화하였다. 또한 특정벡터를 최적화할 수 있는 SFS (Sequential Forward Selection) 기법을 사용해서 제안 감성인식 시스템의 성능을 한층 더 안 정화시켰으며 감성 패턴 분류기로는 k-NN과 SVM을 비교하였다. 실험 결과 제안 시스템은 이동통신 잡음 환경에서 약 86.5%의 높은 인식률을 달성할 수 있어 향후 고객 센터 (Call-center) 등에 유용하게 사용될 수 있을 것으로 기대된다.
최근 유클리드 공간 상에서 효율적인 연속 k-최근접(k-Nearest Neighbors) 질의 처리를 위해 그리드 구조 기반의 많은 색인 기법들이 연구되었다. 하지만 기존 기법들은 k-최근접 객체들을 연산하기 위해 불필요한 셀을 접근하여 연산 자원을 낭비하거나 근접한 셀을 알아내는데 너무 큰 연산 비용을 초래한다. 그래서 본 논문에서는 한 셀과 주변 셀과의 거리 관계 패턴을 이용하여 k-최근접 질의 처리시 적은 연산비용과 적은 저장 공간을 사용하는 새로운 k-최근접 질의 처리 기법을 제안한다. 제안하는 기법은 k-최근접 질의 처리 시 거리 값을 기준으로 정렬된 거리 관계 패턴의 상대좌표를 순차적으로 적용하여 근접한 셀을 알아내기 때문에 O(n)의 셀 검색 비용이 요구된다. 또한 본 논문에서는 CPM[1]과 성능을 비교하여 제안하는 기법의 우수성을 입증한다.
위치 기반 서비스(Location-Based Services: LBS)에서 질의 요청자가 자신의 위치 정보와 원하는 질의를 전송하면, 위치 기반 서버는 이를 기반으로 질의를 처리하고 결과를 전송한다. 이 때 질의 요청자는 자신의 정확한 위치 좌표를 서버에 전송하기 때문에 개인 정보가 악용될 수 있는 위험에 노출된다. 이러한 문제를 해결하기 위하여 제안된 연구는 크게 Location Clocking 기법과 Private Information Retrieval(PIR) 기법으로 분류된다. Location Cloaking 기법은 사용자의 위치 좌표를 k-1개의 다른 사용자와 함께 묶어 하나의 Cloaking 영역을 생성하고 이를 바탕으로 질의를 처리한다. 그러나 영역에 대한 질의 후보 집합을 결과로 전송하므로 사용자에게 노출되는 POI 수가 증가하는 문제점을 지닌다. PIR은 암호화 기법으로 위치 기반 서버나 공격자에게 사용자의 위치와 질의 타입을 드러내지 않고 질의를 수행한다. 그러나 암호화 된 질의 결과로 사용자에게 데이터 전체를 전송하기 때문에 막대한 통신비용을 초래한다. 따라서 본 논문에서는 Location Cloakng과 PIR 기법의 장점을 결합하여 사용자의 개인 정보와 위치 기반 서버의 POI 정보 보호를 고려한 Approximate k-최근접점 질의 처리 알고리즘을 제안한다. 질의 전송시, 질의 요청자는 Cloaking 영역을 생성하여 위치 좌표를 감추고, 질의 결과 전송 시 Cloaking 영역에 제한된 PIR 프로토콜을 적용한다. 또한 k-최근접점 질의 수행시, 반환되는 POI의 수를 최소화하고, 정확도 높은 질의 결과를 만족하기 위해 Overlapping parameter를 적용한 색인 기법을 제안한다.
본 논문에서는 MPEG-7에 정의된 오디오 서술자를 이용한 오디오 특징을 기반으로 한 음악 검색 알고리즘을 제안한다. 특히 timbral 특징들은 음색 구분을 용이하게 할 수 있어 음악 검색뿐만 아니라 음악 장르 분류 또는 Query by humming에 이용 될 수 있다. 이러한 연구를 통하여 오디오 신호의 대표적인 특성을 표현 할 수 있는 특징벡터를 구성 할 수 있다면 추후에 멀티모달 시스템을 이용한 검색 알고리즘에도 오디오 특징으로 이용 될 수 있을 것이다 본 논문에서는 방송 시스템에 적용 할 수 있도록 검색 범위를 특정 컨텐츠의 O.S.T 앨범으로 제한하였다. 즉, 사용자가 임의로 선택한 부분적인 오디오 클립만을 이용하여 그 컨텐츠 전체의 O.S.T 앨범 내에서 음악을 검색할 수 있도록 하였다. 오디오 특징벡터를 구성하기 위한 MPEG-7 오디오 서술자의 조합 방법을 제안하고 distance 또는 ratio 계산 방식을 통해 성능 향상을 추구하였다. 또한 reference 음악의 템플릿 구성 방식의 변화를 통해 성능 향상을 추구하였다. Classifier로 k-NN 방식을 사용하여 성능 평가를 수행한 결과 timbral spectral feature들의 비율을 이용한 IFCR(Intra-Feature Component Ratio) 방식이 Euclidean distance 방식보다 우수한 성능을 보였다.
본 논문은 사용자가 검색에 사용한 질의어를 기반으로 개인의 성향정보를 분석하고자 한다. 이를 위하여 사용자가 검색을 하기 위해서 입력한 질의어를 문서분류기를 이용하여 범주를 부여한다. 본 연구에서는 각 레코드에 미리 부여된 DDC 분류코드를 분류정보로 활용하였다. 이러한 방식을 사용하여 사용자의 질의어를 기반으로 개인의 특징을 분석한다. 분석된 개인의 성향정보를 검색 결과에 반영하고 개인의 의도에 맞는 문서를 재순위화시키는 개인화 검색시스템을 개발하였다. 또한 개인의 성향정보를 이용하여 단어의 중의성 문제를 해결할 수 있었다. 본 논문에서는 한국과학기술정보연구원이 운영 중인 과학기술학회마을 데이터베이스를 이용하여 개인화와 단어중의성 해소에 관한 실험을 수행하였다. 실험과 사용자 평가를 통해서 개인화 검색 및 단어중의성 해소 성능을 제시하였다.
개인용 이동형 단말기의 개선된 성능과 비용, 그리고 무선 통신 기술의 비약적인 발전으로 인하여, 이를 이용하는 사용자들의 수가 빠른 속도로 늘고 있다. 그에 따라 사용자들에게 다양한 서비스를 제공할 수 있는 기술이 요구하고 있는 시점이다. 현재까지의 연구를 통해 사용자가 필요로 하는 최단 경로 찾기 등의 기술은 많은 연구가 이루어져 있다. 하지만 사용자의 현재 위치에 따라 여러 가지 추천 서비스를 제공할 수 있게 하는 기술은 우리가 필요로 하는 도로 망에서가 아닌 Euclidean spaces에 집중되어 있다. 따라서 우리는 기존의 연구를 확장시켜, 도로 망에서 이러한 요구를 충족시킬 수 있는 방법을 제안한다. 우리가 제안하는 시스템은 질의에 대한 응답을 하기 위해 전처리 단계를 필요로 한다. 이 단계에서는 먼저 전체 도로 망을 몇 개의 Voronoi 다각형으로 나누고, 나누어진 각각의 Voronoi 다각형들에 대한 정보를 계산한다. 이러한 과정에서 도로 망의 규모에 맞춰 자동으로 Voronoi 다각형의 개수를 결정하게 한다. 이를 통해 전체 도로 망의 크기가 변경되더라도, 전처리 단계 정보를 저장하는 공간이 예측 가능하도록 선형적으로 증가되게 하였다. 실제 질의 응답과정에서는 미리 계산된 정보를 이용하여 사용자들에게 빠른 속도의 서비스를 제공 할 수 있게 한다. 실험을 통하여 제안된 시스템이 도로 망에서 최근접 질의와 영역 질의를 효과적으로 처리 하여 탐색 시간과 방문 노드 수에서 많은 이점이 있음을 보인다.
본 논문에서는 영상 내의 객체의 형태(shape)에 기반한 객체 유사성 매칭(matching) 방법을 제안한다. 제안한 방법에서는 객체의 윤곽선(edge)에서 점들(edge points)을 추출하고, 추출된 점들의 위치 관계를 나타내기 위하여 각 점을 기준으로 로그 원형 히스토그램(log polar histogram)을 생성하였다. 객체의 윤곽을 따라가며 각 점에 대한 원형 히스토그램을 순차적으로 비교함으로써 객체간의 매칭이 이루어지며, 데이타베이스로부터 유사한 객체를 검색하기 위하여 사용한 매칭 방식은 널리 알려진 k-NN(nearest neighbor) 질의 방식을 사용하였다. 제안한 방법을 검증하기 위하여 기존의 형태 문맥 기법(Shape Context method)과 제안한 방법을 비교하였으며, 객체 유사성 매칭 실험에서 k=5일 때 기존 방법의 정확도가 0.37, 제안한 방법이 0.75-0.90이며, k=10일 때 기존 방법이 0.31, 제안한 방법이 0.61-0.80로서 기존의 방법에 비해 정확한 매칭 결과를 보여 주었다. 또한 영상의 회전 변형 실험에서 기존 방법의 정확도가 0.30, 제안한 방법이 0.69로서 기존 방법보다 회전 변형에 강인한(robust) 특성을 가짐을 관찰할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.