• 제목/요약/키워드: K-Mold

검색결과 2,789건 처리시간 0.024초

강의 연속주조시 Mold Oscillation에 따른 Flux층 내의 동적 압력변화 해석 (The Analysis of Dynamic Pressure in the Molten Flux near the Meniscus during Mold Oscillation for the Continuous Casting of Steel)

  • 박태호;김지훈;최주;예병준
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.26-33
    • /
    • 2004
  • The pressure of the mold flux acting on the meniscus shell was investigated through the coupling analysis of heat transfer in the mold and fluid flow in the flux caused by the mold oscillation. Finite element method was employed to solve the conservation equation associated with appropriate boundary conditions. As reported by previous workers, the axial pressure is positive on the negative strip time and negative on the positive strip time. A maximum pressure is predicted toward the top of the meniscus shell which has the thin shell arid a maximum value is in proportion to the relative mold oscillation velocity. The relative mold oscillation velocity was changed by the effect of meniscus level fluctuation. Therefore the pressure of the mold flux acting on the meniscus shell was different each cycle of the mold oscillation due to the irregularity of relative mold oscillation velocity.

사출금형 냉각수의 유동 패턴이 사출성형품의 변형에 미치는 영향 (Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding)

  • 최계광;홍석무;한성렬
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.92-99
    • /
    • 2015
  • The deformation of injection molding is seriously affected by injection molding conditions, such as melt and mold temperature and injection and holding pressure. In these conditions, the mold temperature is controlled by flowing coolant, which can be classified by the Reynolds number in the mold-cooling channel. In this study, the deformation of the automotive side molding according to the variation of the Reynolds number in the coolant was simulated by Moldflow. In the results, as the Reynolds number was increased, the mold cooling was also increased. However, when the Reynolds number exceeded a certain range, the mold cooling was not increased further. In addition to the Moldflow verification, the mold cooling by the coolant was simulated by CFX. The CFX results confirmed that the Reynolds number significantly influenced the mold cooling. The coolant, which has a high Reynolds number value, quickly cooled the mold. However, the coolant, which has a low Reynolds number value, such as 0 points, hardly cooled the mold. In an injection molding experiment, as the Reynolds number was high, the deformation of the moldings was reduced. The declining tendency of the deformation was similar to the Moldflow results.

미세 패턴 롤 금형 가공시스템의 온도변화가 가공정밀도에 미치는 영향 연구 (Influence upon Machining Accuracy of Micro-Pattern Roll Mold Processed by Temperature Variation)

  • 제태진;박상천;이강원;노진석;최두선;황경현
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.107-111
    • /
    • 2009
  • Temperature variation happens in micro prism roll mold processing system during machining the prism pattern roll mold using manufacturing optical films of LCD (liquid crystal display). This temperature variation induces pitch errors of the prism patterns. The temperature variation displaces the positions of the diamond cutting tool on the roll which was coated by the copper. In order to prevent the pitch errors, the stabilizing the temperature of machining environment is needed. Therefore, the researching on the temperature variation of the ultra-precision roll mold processing system on the machining of micro prism rot 1 mold is needed. In this paper, the temperature variation of micro prism roll mold processing system is researched, the influence is analyzed, and the study for reducing the pitch errors carried out.

소형항공기용(반디호) 몰드 제작 기술개발 (Development of Mold Manufacturing Technology for Small)

  • 정도희;신성관;성기정;송병흠
    • 한국항공운항학회지
    • /
    • 제13권1호
    • /
    • pp.43-49
    • /
    • 2005
  • There are several ways to mold the complex material, and it is divided to vacuum pack mold, compression mold, and hand lay up for a high molecular substance as a basic material. Moreover, it can be divided to general manufacturing (Single form) and mold manufacturing(Mold form) under normal temperature for Firefly. Firefly was manufactured with hand lay up and general manufacturing that using the foam core, glass fabric, and template without mold. However, mold manufacturing that is producing the surface by semi-sandwich using thin foam core and glass fabric then reinforce the inside with spar and rib is on developing. Mold manufacturing can make easy to production, standardize the quality, and possible to mass producing. In this paper, we present the mold producing process for canard aircraft "Firefly", and the problems and solutions during producing Firefly. Moreover, it complements the defect that the problems caused by master manufacturing error when produce several masters of a large part, and make the manufacturing process to be shortened by the replacement from the supplementary plate to the foam that is installed when producing lay up mold.

  • PDF

정밀금형 알루미늄 합금주조공정시 주물/금형 접촉면에서의 Inverse 열전달해석에 관한 연구 (Inverse Heat Transfer Analysis at the Mold/Casting Interface in the Aluminum Alloy Casting Process with Precision Metal Mold)

  • 문수동;강신일
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.246-253
    • /
    • 1998
  • Precision metal mold casting process is a casting method manufacturing mechanical elements with high precision, having heavy/light alloys as casting materials and using permanent mold. To improve dimensional accuracy and the final mechanical properties of the castings, the solidification speed and the cooling rate of the casting should be controlled with the optimum mold cooling system, and moreover, to obtain more accurate control of the whole process interfacial heat transfer characteristic at the mold/casting interface must be studied in advance. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling system was designed and the temperature histories at points inside the metal mold were measured during the casting process. The heat transfer phenomena at the mold/casting interface was characterized by the heat flux between solidifying casting metal and metal mold, and the heat flux history was obtained using inverse heat conduction method. The effect of mold cooling condition upon the heat flux profile was examined, and the analysis shows that the heat flux value has its maximum at the beginning of the process.

  • PDF

A Study on the Behavior of Bubbles Trapped in the In-Mold Coating Process

  • NguyenThi, Phuong;Kwon, Arim;Yoo, Yeong-Eun;Yoon, Jae Sung
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.998-1002
    • /
    • 2012
  • This paper investigates the behavior of bubbles trapped in the in-mold coating (IMC) process. Silicon oil with different viscosity, 100, 150, 200, 300 and 400cps, was selected instead of the coating materials. To observe the flow front inside, a special mold was designed, where front plate was made of transparent material (acrylate). The overall size of front plate was $150mm{\times}120mm$. Mold gate location can be changed from up to down. Four heaters were used to investigate the effectiveness of temperature. The results show that silicon viscosity, mold gate location and mold temperature play an important role on the appearance of bubbles trapped in IMC process.

오일팜 EFB 섬유 적용에 따른 펄프몰드 공정효율 및 제품품질 변화 (Changes in the Process Efficiency and Product Properties of Pulp Mold by the Application of Oil Palm EFB)

  • 김동섭;성용주;김철환;김세빈
    • 펄프종이기술
    • /
    • 제48권1호
    • /
    • pp.67-74
    • /
    • 2016
  • The demand of environmental friendly packaging materials such as pulp mold has been increased. The application of the oil palm biomass, EFB (Empty Fruit Bunch) fiber as natural raw materials to the pulp mold could increase the usability of the pulp mold by the reduced production cost brought from the relatively low cost of EFB. The effects of the EFB(Empty Fruit Bunch) fibers on the properties of pulp mold and on the process efficiency were evaluated in this study. The pulp mold samples were prepared with mixture ONP (Old news paper) and EFB by using laboratory wet pulp molder. The changes in the drying efficiency were measured with the changes in the solid contents of pulp mold samples during drying process. The efficiency of the surface coating treatment on the pulp mold depending on the condition of the pulp mold samples were also evaluated in order to improve the water resistance properties of pulp mold. The addition of EFB increased the drying efficiency by providing the bulkier structure and the higher water contact angle, which indicated the better water resistance properties. The water resistance were improved by the surface coating treatments and the application of surface coating on the pulp mold at the higher moisture contents resulted in the higher improvement in the water resistance. The bulkier structure originated from the application of EFB fiber reduced the effects of the surface coating, which could be overcome by the control of surface coating process.

초박판 사출성형특성 분석을 위한 금형제작에 관한 연구 (A Study of Injection Mold Manufacturing for Ultra-Thin Walled Plate)

  • 이성희;고영배;이종원;김성규;양진석;허영무
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.11-15
    • /
    • 2008
  • A micro-injection mold for ultra-thin-walled plate was considered in this work. The proposed mold system is for the fabrication of ultra-thin walled plastic plate with micro features by injection molding. As the injection molding of thin-walled plastic, which has the thickness under $400{\mu}m$, itself is not easy, the injection molding of the micro-features in the thin-walled structure is more complicated and difficult. To investigate the basic phenomenon of the ultra-thin walled part during the injection molding process, design of the part and mold system were performed in the present study. The injection molding and structural analysis of the suggested part and mold system were also performed. Consequently, injection molding system for ultra-thin walled plate with micro features were manufactured and presented.

  • PDF

전단 가공에서 제품 전단면의 크기에 변화에 관한 연구 (A study on the size of product shear surface in shearing process)

  • 손종민;이희주;조기흠;신성은;김세환;이춘규
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.26-29
    • /
    • 2017
  • Burrs generated during shear forming such as notching and piercing may cause lifting during product assembly, which may deteriorate the productivity and quality of products. In this study, various shear angles and variable clearances between the punch and the die were applied in experimental notching tests to investigate the shear fracture surface and the burr height due to various conditions. The experimental results show that the clearance has the greatest effect on shear and fracture surfaces. It is considered that the height of the shear section increases slightly as the shear angle increases.

환형주조품의 용탕충진에 미치는 탕도연장부와 주입구 형상의 영향 (Effects of Runner Extension and Ingates on Mold Filling in Ring-type Cast Products)

  • 박경섭;강신욱;김희수
    • 한국주조공학회지
    • /
    • 제35권2호
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, potential defects of ring-type cast products during the mold-filling stage of the casting process were investigated using computer simulation. The main focus was on the effects of runner extension and ingates. During the mold filling the molten metal flowed from the bottom to the top of the mold in two curved paths along the ring-type cavity. The fluid fronts in the two paths did not show the identical velocity during the mold filling stage. This difference in the filling speeds may cause defects such as voids and local contractions. The present model contained virtual fluid detectors at various positions inside the mold. When the molten metal passed those points, the volume of fluid jumped up from zero to one. The moments were measured to compare the speeds of the fluid fronts. We attempted various combinations of runner extensions and ingates to stabilize the flow and then to optimize the casting mold design.