KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.4
/
pp.575-594
/
2010
In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.
This paper is concerned with departure passengers' dwell time analysis using real system data. Previous researches emphasize the importance of dwell time analysis from perspective of airport terminal planning and non-aeronautical revenue. However, short-term airport operation using passengers' dwell time is considered impossible due to absence of passengers' behavior data. Recently, in accordance with the wave of smart airport, world leading airports are systematically collecting passenger data. So there is high possibility of analyzing passengers' dwell time with the data stacked in the airport database. We conducted dwell time analysis using data from Incheon Int'l airport. In order to handle passenger data, we adapted clustering algorithm which is one of data mining techniques. As a clustering result, passengers are divided into 3 clusters. One is the cluster for passengers whose dwell time is relatively short and who tend to spend longer time in the airside. Another is the cluster for passengers who have near 3 hours dwell time. The other is the cluster for passengers whose total dwell time is extremely long.
In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.6
/
pp.586-591
/
2014
In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.
클러스터링에 있어서 k-means[7], DBSCAN[2], CURE[4], ROCK[5], PAM[8], 같은 기존의 알고리즘은 원형이나 타원형 등의 어느 고정된 모양에 의해 클러스터를 결정한다. 만약 클러스터 하려는 데이터의 분포가 우연히 알고리즘의 결정된 모양과 일치하면 정확한 해를 얻을 수 있다. 하지만 자연적인 데이터의 분포에서는 발생하기 어렵다. 데이터의 형태를 추적하여 이러한 문제점을 해결한 CHAMELEON[1] 알고리즘이 최근에 발표되었다. 하지만 모양에는 독립적이나 데이터의 양이 증가함에 따라 소요되는 시간이 폭발적으로 증가한다. 이것은 기존의 마이닝 데이터들이 대용량이라는 것을 고려하면 현실에 적용하기 힘든 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 K-means[7]]를 이용한 대표를 선출하는 방법으로 CHAMELEON[1]의 문제점 개선(EF-CHAMELEON)을 시도하였으며 여러 자연적인 형태의 도형들은 아주 작은 원형들의 집합으로 구성 될 수 있다는 생각을 기본으로 잡음에 영향을 받지 않을 정도로 아주 작은 초기 다수의 소형 클러스터를 K-mean을 이용하여 구성하고 이를 다시 크러스터간의 상대적인 거리를 이용하여 다시 머지 하는 방법으로 모양에 의존적인 문제를 해결하며 비교사 학습(unsupervised learning)에 충실하기 위해 임계값을 적용 적정 단계에서 알고리즘을 멈추게 한 ADF 알고리즘을 소개한다. 실험 데이터는 기존의 여러 클러스터링 알고리즘이 판별 할 수 없었던 다양한 모양을 가지고있는 2차원 배열을 사용하여 ADF. CHAMELEON[1], EF-CHAMELEON,의 성능을 비교하였다.
In this paper, we present two types of digital image stabilization (DIS) schemes for mobile video communications. In the first scheme, the DIS system, which is used as a preprocessor of the video encoder, compensates the camera’s undesirable shakes before encoding. This method can reduce the bit rate of encoded video sequence by attenuating the prediction error to be encoded. In the second proposed scheme, the DIS system is coupled with the video decoder. The second scheme uses the K-means clustering algorithm to estimate the camera motion using motion vectors decoded from the received video stream. Simulation results show that the first scheme improves coding efficiency, while the second scheme is computationally efficient since it does not require motion estimation.
모든 곳에 존재하는 네트워크 환경을 의미하는 '유비쿼터스' 시대와 최신 기술로 구현되어 인간을 도와주는 '지능형 로봇'의 시대가 도래하고 있다. 기술의 흐름은, 이제 우리에게 공장과 공원 등의 공공 장소뿐 만이 아니라, 생활의 기본이 되는 가정 안에서의 로봇을 받아들일 준비를 요구하고 있다. 로봇과 사용자는 실제 생활 속에서 많은 상호 작용을 하게 되며, 필연적으로 여러 가지의 불확실성을 내포하게 되는데, 각각의 요청들과 상황들은, 미리 정해진 규칙에 의거해 처리하기에는 너무 다양하다. 그 어려움을 극복하는 방법으로, 어떤 상황에 적응하는 방법으로 기억을 사용 하는 인간과 마찬가지로, 로봇은 새로운 요청을 처리하기 위해 과거의 기록을 사용할 수 있다. 여러 가지 과거의 기록들을 잘 정리해서 분류하여 저장해둔 후, 현재의 요청에 대한 답으로, 가장 가능성 있는 과거의 기록을 찾아내는 것이다. 본 논문에서는 사용자와 로봇 사이에서 상호 작용에서 발생할 수 있는 불확실성을 과거기록의 탐색을 통해 해결하고자 하였다. 과거 기록은 시간, 장소, 대상 물건, 행동 유형으로 구분되어 저장하였으며, 각각의 유사 가능성(Possibility)들의 합을 기준으로, 전체 기록을 K-Means 알고리즘을 통하여 군집화하고 협력 필터링을 기반으로 현재의 요청이 담고 있는 불확실성에 대한 가능성 있는 값을 추천해 주었다. 제한된 공간과 제한된 자료의 수에 의한 실험 결과로서의 한계를 가지고 있지만, 실제 가정용 로봇에서의 적용 가능성을 보여주었다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.1
s.307
/
pp.53-66
/
2006
This paper proposes the combined image retrieval system that gives the same relevance as exhaustive search method while its performance can be considerably improved. This system is combined with two different retrieval methods and each gives the same results that full exhaustive search method does. Both of them are two-stage method. One uses condensation of feature vectors, and the other uses binary-tree clustering. These two methods extract the candidate images that always include correct answers at the first stage, and then filter out the incorrect images at the second stage. Inasmuch as these methods use equal algorithm, they can get the same result as full exhaustive search. The first method condenses the dimension of feature vectors, and it uses these condensed feature vectors to compute similarity of query and images in database. It can be found that there is an optimal condensation ratio which minimizes the overall retrieval time. The optimal ratio is applied to first stage of this method. Binary-tree clustering method, searching with recursive 2-means clustering, classifies each cluster dynamically with the same radius. For preserving relevance, its range of query has to be compensated at first stage. After candidate clusters were selected, final results are retrieved by computing similarities again at second stage. The proposed method is combined with above two methods. Because they are not dependent on each other, combined retrieval system can make a remarkable progress in performance.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.38-41
/
2014
본 논문에서는 필기 문서 영상을 분석하여 단어 단위로 요소들을 분할하는 방법을 제안한다. 일반적으로 인쇄 문서에 비하여 필기 문서에서는 글자 간 간격이 일정하지 않을 뿐만 아니라 필기자 또는 작성된 언어에 따라 특성이 매우 다르게 나타나기 때문에 단어를 분리하는 것은 어려운 문제로 간주되었고 많은 연구가 진행되었다. 제안하는 방법은 이 문제를 해결하기 위하여 글자 획의 두께를 고려하여 정규화시킨 각 연결 요소간 간격과 간격 안에 존재하는 글자 픽셀의 수로 구성된 2 차원의 특징값을 추출하였다. 이 특징값을 바탕으로, 제안하는 방법은 k-평균 클러스터링을 이용하여 각 텍스트라인을 구성하는 연결 요소간 간격을 단어 사이의 간격과 단어 내부 글자간의 간격으로 분류하였다. ICDAR 2013 Handwriting Segmentation Contest 데이터베이스에 대한 실험 결과 제안하는 방법은 가장 우수한 성능을 나타내었다.
The Transactions of The Korean Institute of Electrical Engineers
/
v.64
no.1
/
pp.113-120
/
2015
In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.