• Title/Summary/Keyword: K-Means clustering algorithm

Search Result 548, Processing Time 0.023 seconds

Improved Expectation and Maximization via a New Method for Initial Values (새로운 초기치 선정 방법을 이용한 향상된 EM 알고리즘)

  • Kim, Sung-Soo;Kang, Jee-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.416-426
    • /
    • 2003
  • In this paper we propose a new method for choosing the initial values of Expectation-Maximization(EM) algorithm that has been used in various applications for clustering. Conventionally, the initial values were chosen randomly, which sometimes yields undesired local convergence. Later, K-means clustering method was employed to choose better initial values, which is currently widely used. However the method using K-means still has the same problem of converging to local points. In order to resolve this problem, a new method of initializing values for the EM process. The proposed method not only strengthens the characteristics of EM such that the number of iteration is reduced in great amount but also removes the possibility of falling into local convergence.

A Study on Case-based Reasoning using K-Means Clustering Algorithm (K-Means 클러스터링 알고리즘을 이용한 사례기반 추론에 관한 연구)

  • Hyun, Woo-Seok
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.341-344
    • /
    • 2003
  • 사례 기반 추론(case-based reasoning)은 현재의 문제를 해결하기 위해서 과거에 유사하게 수행된적이 있는 사례를 유추하여, 유추된 사례의 해를 이용하는 기법으로서 규칙 기반 추론과 함께 여러분야에 응용되고 있다. 하지만 사례기반 추론 시 새로운 사례를 해결하기 위하여 사례베이스 안의 모든 사례를 검색해야 하기 때문에 수행시간이 증가되는 문제점을 지니고 있다. 본 연구에서는 규칙 및 K-Means 클러스터링 알고리즘에 의한 사례 기반 추론을 이용한 ADS-DAAP(Advanced Diagnosis System for Diseases associated with Acute Abdominal Pain)를 제안한다. 제안하는 시스템은 기존의 CDS-DAAP(Combined Diagnosis System for Diseases associated with Acute Abdominal Pain)와 비교해 볼 때, 수행시간을 감소시켰다.

  • PDF

Study of Data Placement Schemes for SNS Services in Cloud Environment

  • Chen, Yen-Wen;Lin, Meng-Hsien;Wu, Min-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3203-3215
    • /
    • 2015
  • Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.

Image Contrast Enhancement Technique Using Clustering Algorithm (클러스터링 알고리듬을 이용한 영상 대비 향상 기법)

  • Kim, Nam-Jin;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.310-315
    • /
    • 2004
  • Image taken in the night can be low-contrast images because of poor environment and image transmission. We propose an algorithm that improves the acquired low-contrast image. MPEG-2 separates chrominance and illuminance, and compresses respectively because human vision is more sensitive to luminance. We extracted illumination and used K-means algorithm to find a proper crossover point automatically. We used K-means algorithm in the viewpoint that the problem of crossover point selection can be considered as the two-category classification problem. We divided an image into two subimages using the crossover point, and applied the histogram equalization method respectively. We used the index of fuzziness to evaluate the degree of improvement. We compare the results of the proposed method with those of other methods.

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

Extraction of Concept by Latent Semantic Indexing and k-means Clustering (잠재적 의미와 k-means 군집화를 이용한 개념추출 검색)

  • 장유진;임호섭;박기림;김민구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.22-24
    • /
    • 2001
  • 정보검색 시스템에서 사용자의 질의어가 불완전함에 따라 생기는 검색 효율의 저하를 줄이기 위하여 용어의 상호관련성을 반영함과 동시에 벡터의 공간을 축소하는 LSI 모델을 사용하여 문서 집합으로부터 잠재적 의미 공간을 구축하였다. 또한 의미 공간상에 있는 문서의 분포에 따라 \"개념\"을 추출하기 하기 위해 k-means algorithm을 사용하여 군집화 시켰다. 이로부터 불완전한 초기 사용자 질의어를 의미 공간에 구축된 클러스터링 정보로 수정하여 새로운 질의어를 생성함으로 검색의 효율을 높이고자 하였다. 검색 효율을 측정하기 위해 TREC 데이터를 이용하여 분석하였으며 결과는 질의어의 성격에 따라 달라졌으나 대체적으로 우수한 성능을 보였다.한 성능을 보였다.

  • PDF

A study on the visualization of financial transfer entropy by the k-means clustering algorithm (K-means 클러스터링 알고리즘을 이용한 financial transfer entropy 시각화 연구)

  • Kim, Jinkyu;Yoon, Sungroh
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.409-410
    • /
    • 2009
  • 최근 Transfer entropy 이론을 주가지수 데이터에 적용하여 각 국가 간 상호 주고받는 정보의 방향성을 분석하고자 하는 연구가 진행되었다. 하지만 이렇게 각 국가 간의 정보 이동 관계를 고려하는 것도 중요하지만, 나아가 비슷한 방향성을 갖는 국가 군을 찾고 이를 분석하는 것 또한 중요한 연구이다. 기존의 연구 결과는 각 국가 간의 Entropy만 계산한 이차원 구조로 이 같은 경향성을 파악하기가 쉽지 않았다. 따라서 본 연구에서는 이 경향성을 쉽게 찾기 위해 k-means 클러스터링 알고리즘을 적용한 시각화 방법을 제안하고자 한다.

Extensions of X-means with Efficient Learning the Number of Clusters (X-means 확장을 통한 효율적인 집단 개수의 결정)

  • Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.772-780
    • /
    • 2008
  • K-means is one of the simplest unsupervised learning algorithms that solve the clustering problem. However K-means suffers the basic shortcoming: the number of clusters k has to be known in advance. In this paper, we propose extensions of X-means, which can estimate the number of clusters using Bayesian information criterion(BIC). We introduce two different versions of algorithm: modified X-means(MX-means) and generalized X-means(GX-means), which employ one full covariance matrix for one cluster and so can estimate the number of clusters efficiently without severe over-fitting which X-means suffers due to its spherical cluster assumption. The algorithms start with one cluster and try to split a cluster iteratively to maximize the BIC score. The former uses K-means algorithm to find a set of optimal clusters with current k, which makes it simple and fast. However it generates wrongly estimated centers when the clusters are overlapped. The latter uses EM algorithm to estimate the parameters and generates more stable clusters even when the clusters are overlapped. Experiments with synthetic data show that the purposed methods can provide a robust estimate of the number of clusters and cluster parameters compared to other existing top-down algorithms.

Cotent-based Image Retrieving Using Color Histogram and Color Texture (컬러 히스토그램과 컬러 텍스처를 이용한 내용기반 영상 검색 기법)

  • Lee, Hyung-Goo;Yun, Il-Dong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.76-90
    • /
    • 1999
  • In this paper, a color image retrieval algorithm is proposed based on color histogram and color texture. The representative color vectors of a color image are made from k-means clustering of its color histogram, and color texture is generated by centering around the color of pixels with its color vector. Thus the color texture means texture properties emphasized by its color histogram, and it is analyzed by Gaussian Markov Random Field (GMRF) model. The proposed algorithm can work efficiently because it does not require any low level image processing such as segmentation or edge detection, so it outperforms the traditional algorithms which use color histogram only or texture properties come from image intensity.

  • PDF

Improvement of Cognitive Rehabilitation Method using K-means Algorithm (K-MEANS 알고리즘을 이용한 인지 재활 훈련 방법의 개선)

  • Cho, Ha-Yeon;Lee, Hyeok-Min;Moon, Ho-Sang;Shin, Sung-Wook;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • The purpose of this study is to propose a training method customized to the level of cognitive abilities to increase users' interest and engagement while using cognitive function training contents. The level of cognitive ability of the users was based on the clustering based on the users' information and Mini-Mental Statue Examination-Korea Child test score using the K-means algorithm applied collaborative filtering. The results were applied to the integrated cognitive function training system, and the contents order and difficulty level of the cognitive function training area were recommended to the user's cognitive ability level. Particularly, the contents difficulty control was designed to give a high immersion feeling by applying the 'flow theory' method that users can repeatedly feel tension and comfort. In conclusion, the user-customized cognitive function training method proposed in this paper can be expected to be more effective and rehabilitative results than existing therapists' subjective setting of contents order and difficulty level.