Kim, Hyung Jin;Jung, Jae Hoon;Lee, Jung Bin;Kim, Sang Min;Heo, Joon
Journal of Korean Society for Geospatial Information Science
/
v.22
no.4
/
pp.175-181
/
2014
Korean government proposed a new initiative 'government 3.0' with which the administration will open its dataset to the public before requests. City of Seoul is the front runner in disclosure of government data. If we know what kind of attributes are governing factors for any given segmentation, these outcomes can be applied to real world problems of marketing and business strategy, and administrative decision makings. However, with respect to city of Seoul, selection of optimal variables from the open dataset up to several thousands of attributes would require a humongous amount of computation time because it might require a combinatorial optimization while maximizing dissimilarity measures between clusters. In this study, we acquired 718 attribute dataset from Statistics Korea and conducted an analysis to select the most suitable variables, which differentiate Gangnam from other districts, using the Genetic algorithm and Dunn's index. Also, we utilized the Microsoft Azure cloud computing system to speed up the process time. As the result, the optimal 28 variables were finally selected, and the validation result showed that those 28 variables effectively group the Gangnam from other districts using the Ward's minimum variance and K-means algorithm.
Jung, Se Hoon;Kim, Jong Chan;Kim, Cheeyong;You, Kang Soo;Sim, Chun Bo
Journal of Korea Multimedia Society
/
v.21
no.7
/
pp.779-786
/
2018
In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.
Yoo, Namjo;Lee, Eunae;Chung, Beom Jin;Kim, Dong Sik
Journal of IKEEE
/
v.23
no.4
/
pp.1373-1380
/
2019
In order to increase energy efficiency, developments of the advanced metering infrastructure (AMI) in the smart grid technology have recently been actively conducted. An essential part of AMI is analyzing power consumption and forecasting consumption patterns. In this paper, we analyze the power consumption and summarized the data errors. Monthly power consumption patterns are also analyzed using the k-means clustering algorithm. Forecasting the consumption pattern by each household is difficult. Therefore, we first classify the data into 100 clusters and then predict the average of the next day as the daily average of the clusters based on the deep neural network. Using practically collected AMI data, we analyzed the data errors and could successfully conducted power forecasting based on a clustering technique.
Bae, Won-il;Choi, Suk-June;Kim, Seong-Jin;Kim, Hyeong-Cheon;Kwak, Jin
Journal of Internet Computing and Services
/
v.18
no.1
/
pp.11-20
/
2017
Recently, developments in the various fields of cloud computing technology has been utilized. Whereas the demand for cloud computing services is increasing, security threats are also increasing in the cloud computing environments. Especially, in case when the hosts interconnected in the cloud environments are infected and propagated through the attacks by malware. It can have an effect on the resource of other hosts and other security threats such as personal information can be spreaded and data deletion. Therefore, the study of malware analysis to respond these security threats has been proceeded actively. This paper proposes a type of attack clustering method of Zeus botnet using the k-means clustering algorithm for malware analysis that occurs in the cloud environments. By clustering the malicious activity by a type of the Zeus botnet occurred in the cloud environments. it is possible to determine whether it is a malware or not. In the future, it sets a goal of responding to an attack of the new type of Zeus botnet that may occur in the cloud environments.
This article deals with the problem that all the statistical clustering methods do not supply the clustering rule after the analysis. We modify the Coulomb Energy Network model basically developed in physics and suggest one model appropriate for our purpose and show the implementation using an actual data. Finally the method suggested is compared with one of the well known methods, K-means algorithm using Rand C.
The Transactions of The Korean Institute of Electrical Engineers
/
v.61
no.3
/
pp.472-478
/
2012
The inspection machine in PCB (printed circuit board) assembly line checks assembly errors by inspecting the images inside of the component inspection region. The component inspection region consists of region of component package and region of soldering. It is necessary to extract the regions automatically for auto-teaching system of the inspection machine. We propose an image segmentation method to extract the component inspection regions automatically from images of PCB. The acquired image is transformed to HSI color model, and then segmented by several regions by clustering method. We develop a modified K-means algorithm to increase the accuracy of extraction. The heuristics generating the initial clusters and merging the final clusters are newly proposed. The vertical and horizontal projection is also developed to distinguish the region of component package and region of soldering. The experimental results are presented to verify the usefulness of the proposed method.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.271-273
/
2021
본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.403-407
/
2005
자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 본 논문에서는 자궁 경부 세포진 영상에서 HSI 모델을 이용하여 세포진 핵 영역을 추출한다. 추출된 세포진 핵 영역은 형태학적 정보(morphometric feature)와 명암 정보(densitometric feature), 색상 정보(colorimetric feature), 질감 정보(textural features)를 분석하여 핵의 특징을 추출한다. 또한 Bethesda System에서의 분류 기준에 따라 핵의 분류 기준을 정하고 추출된 핵의 특징들을 퍼지 c-Means 클러스터링 알고리즘에 적용하여 실험한 결과, 제안된 방법이 자궁 세포진 핵 추출과 인식에 있어서 효율적임을 확인하였다.
International Journal of Internet, Broadcasting and Communication
/
v.15
no.3
/
pp.176-184
/
2023
Points of interest (POIs) are widely used in tourism recommendations and to provide information about areas of interest. Currently, situation judgement using POI and GPS data is mainly rule-based. However, this approach has the limitation that inferences can only be made using predefined POI information. In this study, we propose an algorithm that uses POI data, GPS data, and schedule information to calculate the current speed, location, schedule matching, movement trajectory, and POI coverage, and uses machine learning to determine whether to stay or go. Based on the input data, the clustered information is labelled by k-means algorithm as unsupervised learning. This result is trained as the input vector of the SVM model to calculate the probability of moving and staying. Therefore, in this study, we implemented an algorithm that can adjust the schedule using the travel schedule, POI data, and GPS information. The results show that the algorithm does not rely on predefined information, but can make judgements using GPS data and POI data in real time, which is more flexible and reliable than traditional rule-based approaches. Therefore, this study can optimize tourism scheduling. Therefore, the stay detection algorithm using GPS movement trajectories and POIs developed in this study provides important information for tourism schedule planning and is expected to provide much value for tourism services.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.33
no.4
/
pp.303-309
/
2020
This study proposes a crack identification algorithm to analyze the surface condition of porcelain insulators and to efficiently visualize cracks. The proposed image processing algorithm for crack identification consists of two primary steps. In the first step, the brightness is eliminated by converting the image to the lab color space. Then, the background is removed by the K-means clustering method. After that, the optimum image treatment is applied using morphological image processing and median filtering to remove unnecessary noise, such as blobs. In the second step, the preprocessed image is converted to grayscale, and any cracks present in the image are identified. Next, the region properties, such as the number of pixels and the ratio of the major to the minor axis, are used to separate the cracks from the noise. Using this image processing algorithm, the precision of crack identification for all the sample images was approximately 80%, and the F1 score was approximately 70. Thus, this method can be helpful for efficient crack monitoring.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.