• Title/Summary/Keyword: K-Means clustering algorithm

Search Result 548, Processing Time 0.025 seconds

An Extension of Possibilistic Fuzzy C-means using Regularization (Regularization을 이용한 Possibilistic Fuzzy C-means의 확장)

  • Heo, Gyeong-Yong;NamKoong, Young-Hwan;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means (FCM) and possibilistic c-means (PCM) are the two most well-known clustering algorithms in fuzzy clustering area, and have been applied in many applications in their original or modified forms. However, FCM's noise sensitivity problem and PCM's overlapping cluster problem are also well known. Recently there have been several attempts to combine both of them to mitigate the problems and possibilistic fuzzy c-means (PFCM) showed promising results. In this paper, we proposed a modified PFCM using regularization to reduce noise sensitivity in PFCM further. Regularization is a well-known technique to make a solution space smooth and an algorithm noise insensitive. The proposed algorithm, PFCM with regularization (PFCM-R), can take advantage of regularization and further reduce the effect of noise. Experimental results are given and show that the proposed method is better than the existing methods in noisy conditions.

Fiscal Policy Effectiveness Assessment Based on Cluster Analysis of Regions

  • Martynenko, Valentyna;Kovalenko, Yuliia;Chunytska, Iryna;Paliukh, Oleksandr;Skoryk, Maryna;Plets, Ivan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.75-84
    • /
    • 2022
  • The efficiency of the regional fiscal policy implementation is based on the achievement of target criteria in the formation and distribution of own financial resources of local budgets, reducing their deficit and reducing dependence on transfers. It is also relevant to compare the development of financial autonomy of regions in the course of decentralisation of fiscal relations. The study consists in the cluster analysis of the effectiveness of fiscal policy implementation in the context of 24 regions and the capital city of Kyiv (except for temporarily occupied territories) under conditions of fiscal decentralisation. Clustering of the regions of Ukraine by 18 indicators of fiscal policy implementation efficiency was carried out using Ward's minimum variance method and k-means clustering algorithm. As a result, the regions of Ukraine are grouped into 5 homogeneous clusters. For each cluster measures were developed to increase own revenues and minimize dependence on official transfers to increase the level of financial autonomy of the regions. It has been proved that clustering algorithms are an effective tool in assessing the effectiveness of fiscal policy implementation at the regional level and stimulating further expansion of financial decentralisation of regions.

An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition (물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정)

  • Kim, Dong-Gi;Lee, Seong-Gyu;Lee, Moon-Wook;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

Characterization of Premature Ventricular Contraction by K-Means Clustering Learning Algorithm with Mean-Reverting Heart Rate Variability Analysis (평균회귀 심박변이도의 K-평균 군집화 학습을 통한 심실조기수축 부정맥 신호의 특성분석)

  • Kim, Jeong-Hwan;Kim, Dong-Jun;Lee, Jeong-Whan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1072-1077
    • /
    • 2017
  • Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.

Shot Change Detection Using Fuzzy Clustering Method on MPEG Video Frames (퍼지 클러스터링 기법을 이용한 MPEG 비디오의 장면 전환 검출)

  • Lim, Seong-Jae;Kim, Woon;Lee, Bae-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.159-162
    • /
    • 2000
  • In this paper, we propose an efficient method to detect shot changes in compressed MPEG video data by using reference features among video frames. The reference features among video frames imply the similarities among adjacent frames by prediction coded type of each frame. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. And the shot change detection algorithm is improved by using Fuzzy c-means (FCM) clustering algorithm. The FCM clustering algorithm uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.

  • PDF

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

Fine-Grained Mobile Application Clustering Model Using Retrofitted Document Embedding

  • Yoon, Yeo-Chan;Lee, Junwoo;Park, So-Young;Lee, Changki
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.443-454
    • /
    • 2017
  • In this paper, we propose a fine-grained mobile application clustering model using retrofitted document embedding. To automatically determine the clusters and their numbers with no predefined categories, the proposed model initializes the clusters based on title keywords and then merges similar clusters. For improved clustering performance, the proposed model distinguishes between an accurate clustering step with titles and an expansive clustering step with descriptions. During the accurate clustering step, an automatically tagged set is constructed as a result. This set is utilized to learn a high-performance document vector. During the expansive clustering step, more applications are then classified using this document vector. Experimental results showed that the purity of the proposed model increased by 0.19, and the entropy decreased by 1.18, compared with the K-means algorithm. In addition, the mean average precision improved by more than 0.09 in a comparison with a support vector machine classifier.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

Machine Learning-based Screening Algorithm for Energy Storage System Using Retired Lithium-ion Batteries (에너지 저장 시스템 적용을 위한 머신러닝 기반의 폐배터리 스크리닝 알고리즘)

  • Han, Eui-Seong;Lim, Je-Yeong;Lee, Hyeon-Ho;Kim, Dong-Hwan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.265-274
    • /
    • 2022
  • This paper proposes a machine learning-based screening algorithm to build the retired battery pack of the energy storage system. The proposed algorithm creates the dataset of various performance parameters of the retired battery, and this dataset is preprocessed through a principal component analysis to reduce the overfitting problem. The retried batteries with a large deviation are excluded in the dataset through a density-based spatial clustering of applications with noise, and the K-means clustering method is formulated to select the group of the retired batteries to satisfy the deviation requirement conditions. The performance of the proposed algorithm is verified based on NASA and Oxford datasets.