• Title/Summary/Keyword: K-Means 클러스터링

Search Result 368, Processing Time 0.026 seconds

Privacy-Preserving k-means Clustering of Encrypted Data (암호화된 데이터에 대한 프라이버시를 보존하는 k-means 클러스터링 기법)

  • Jeong, Yunsong;Kim, Joon Sik;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1401-1414
    • /
    • 2018
  • The k-means clustering algorithm groups input data with the number of groups represented by variable k. In fact, this algorithm is particularly useful in market segmentation and medical research, suggesting its wide applicability. In this paper, we propose a privacy-preserving clustering algorithm that is appropriate for outsourced encrypted data, while exposing no information about the input data itself. Notably, our proposed model facilitates encryption of all data, which is a large advantage over existing privacy-preserving clustering algorithms which rely on multi-party computation over plaintext data stored on several servers. Our approach compares homomorphically encrypted ciphertexts to measure the distance between input data. Finally, we theoretically prove that our scheme guarantees the security of input data during computation, and also evaluate our communication and computation complexity in detail.

Property-based Hierarchical Clustering of Peers using Mobile Agent for Unstructured P2P Systems (비구조화 P2P 시스템에서 이동에이전트를 이용한 Peer의 속성기반 계층적 클러스터링)

  • Salvo, MichaelAngelG.;Mateo, RomeoMarkA.;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2009
  • Unstructured peer-to-peer systems are most commonly used in today's internet. But file placement is random in these systems and no correlation exists between peers and their contents. There is no guarantee that flooding queries will find the desired data. In this paper, we propose to cluster nodes in unstructured P2P systems using the agglomerative hierarchical clustering algorithm to improve the search method. We compared the delay time of clustering the nodes between our proposed algorithm and the k-means clustering algorithm. We also simulated the delay time of locating data in a network topology and recorded the overhead of the system using our proposed algorithm, k-means clustering, and without clustering. Simulation results show that the delay time of our proposed algorithm is shorter compared to other methods and resource overhead is also reduced.

  • PDF

A Study on Phase of Arrival Pattern using K-means Clustering Analysis (K-Means 클러스터링을 활용한 선박입항패턴 단계화 연구)

  • Lee, Jeong-Seok;Lee, Hyeong-Tak;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.54-55
    • /
    • 2020
  • In 4th Industrial Revolution, technologies such as artificial intelligence, Internet of Things, and Big data are closely related to the maritime industry, which led to the birth of autonomous vessels. Due to the technical characteristics of the current vessel, the speed cannot be suddenly lowered, so complex communication such as the help of a tug boat, boarding of a pilot, and control of the vessel at the onshore control center is required to berth at the port. In this study, clustering analysis was used to resolve how to establish control criteria for vessels to enter port when autonomous vessels are operating. K-Means clustering was used to quantitatively stage the arrival pattern based on the accumulated AIS(Automatic Identification System) data of the incoming vessel, and the arrival phase using SOG(Speed over Ground), COG(Course over Ground), and ROT(Rate of Turn) Was divided into six phase.

  • PDF

Areal Image Clustering using Hybrid Kohonen Network (Hybrid Kohonen 네트워크에 의한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.250-251
    • /
    • 2015
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.

  • PDF

Document clustering based on summarized document using K-means algorithm (요약 문서 기반 문서 클러스터링)

  • Oh, Hyung-Jin;Ko, Ji-Hyun;An, Dong-Un;Chung, Sung-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.589-592
    • /
    • 2002
  • 정보검색 시스템에서 문서 클러스터링 기법은 사용자 질의에 대하여 검색된 문서를 문서간의 관련도에 따라 클러스터로 구성하고 사용자에게 검색 결과로 보여주는 것이다. 본 논문에서는 사용자의 질의에 대하여 검색된 문서를 자동 문서 요약기를 통해 얻은 요약 문서와 문서 전문을 문서들간의 유사도를 기반으로 동적으로 클러스터링 한다. 구현한 시스템의 클러스터링 효과를 검증한 결과 검색된 문서 전문을 클러스터링 한 방식에 비해 요약 문서를 클러스터링 한 방식이 정확률 측면에서 더 나은 성능을 보였다.

  • PDF

A Novel Approach towards use of Adaptive Multiple Kernels in Interval Type-2 Possibilistic Fuzzy C-Means (적응적 Multiple Kernels을 이용한 Interval Type-2 Possibilistic Fuzzy C-Means 방법)

  • Joo, Won-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.529-535
    • /
    • 2014
  • In this paper, we propose a hybrid approach towards multiple kernels interval type-2 possibilistic fuzzy C-means(PFCM) based on interval type-2 possibilistic fuzzy c-means(IT2PFCM) and possibilistic fuzzy c-means using multiple kernels( PFCM-MK). In case of noisy data or overlapping cluster prototypes, fuzzy C-means gives poor performance in comparison to possibilistic fuzzy C-means(PFCM). Moreover, to address the uncertainty associated with fuzzifier parameter m, interval type-2 possibilistic fuzzy C-means(PFCM) is used. Most of the practical data available are complex and non-linearly separable. In such cases using Gaussian kernels proves helpful. Therefore, in order to overcome all these issues, we have integrated multiple kernels possibilistic fuzzy C-means(PFCM) into interval type-2 possibilistic fuzzy C-means(IT2PFCM) and propose the idea of multiple kernels based interval type-2 possibilistic fuzzy C-means(IT2PFCM-MK).

Motion Object Segmentation based on Clustering using Color and Position features (색상과 위치정보를 이용한 클러스터링 기반의 움직이는 객체의 검출)

  • 정윤주;김성동;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.306-308
    • /
    • 2003
  • 본 논문은 컬러영상내 움직이는 객체의 효과적인 검출을 위해 색상과 위치정보를 적용시킨 K-means 클러스터링 알고리즘을 이용하여 움직이는 객체들을 추출한 방법을 제안하고 있다. 최종 클러스터링된 중심픽셀(prototype)이 갖고있는 RGB 값을 사용해 프레임을 비교해 객체와 배경의 분리를 가능하게 했고 마지막으로 후처리를 이용해 남아있는 배경잡음을 제거하였다. 본 연구의 실험은 여러 교통장면을 포함한 다양한 영상에서 이루어졌으며 실험결과 제안된 알고리즘은 기존의 픽셀이나 블록기반의 방법에 비해 보다 정확한 객체 검출이 가능했으며 한 가지 특징 정보를 사용한 클러스터링에 비해 보다 높은 정확도를 보였다.

  • PDF

Improvement on Density-Independent Clustering Method (밀도에 무관한 클러스터링 기법의 개선)

  • Kim, Seong-Hoon;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.967-973
    • /
    • 2017
  • Clustering is one of the most well-known unsupervised learning methods that clusters data into homogeneous groups. Clustering has been used in various applications and FCM is one of the representative methods. In Fuzzy C-Means(FCM), however, cluster centers tend leaning to high density areas because the Euclidean distance measure forces high density clusters to make more contribution to clustering result. Previously proposed was density-independent clustering method, where cluster centers were made not to be close each other and relived the center deviation problem. Density-independent clustering method has a limitation that it is difficult to specify the position of the cluster centers. In this paper, an enhanced density-independent clustering method with an additional term that makes cluster centers to be placed around dense region is proposed. The proposed method converges more to real centers compared to FCM and density-independent clustering, which can be verified with experimental results.

A Malicious Traffic Detection Method Using X-means Clustering (X-means 클러스터링을 이용한 악성 트래픽 탐지 방법)

  • Han, Myoungji;Lim, Jihyuk;Choi, Junyong;Kim, Hyunjoon;Seo, Jungjoo;Yu, Cheol;Kim, Sung-Ryul;Park, Kunsoo
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.617-624
    • /
    • 2014
  • Malicious traffic, such as DDoS attack and botnet communications, refers to traffic that is generated for the purpose of disturbing internet networks or harming certain networks, servers, or hosts. As malicious traffic has been constantly evolving in terms of both quality and quantity, there have been many researches fighting against it. In this paper, we propose an effective malicious traffic detection method that exploits the X-means clustering algorithm. We also suggest how to analyze statistical characteristics of malicious traffic and to define metrics that are used when clustering. Finally, we verify effectiveness of our method by experiments with two released traffic data.

A Similar Price Zone Determination of Public Land Price Using a Hybrid Clustering Technique (평균연결법과 K-means 혼합클러스터링 기법을 이용한 공시지가 유사가격권역의 설정)

  • Yi Seong-Kyu;Park Soo-Hong;Hong Sung-Eon
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.121-135
    • /
    • 2006
  • Even though the similar land price zone is very important element in the public land appraisal procedure, the concept is implicitly described and applied into the actual land appraisal system. This situation makes it worse when applying for the automatic selection of a comparative standard land parcel. In addition, the division of similar land price zones requires the objective and reasonable process for improving ALPAS(Automatic land Price Appraisal System), which becomes an issue today. To solve the similar land price zone determination problem that is caused by the lack of objective numerical standard, this study proposed a similar land price zone determination method using a hybrid clustering technique. Results showed that this hybrid clustering method that applied into the test area could easily detect similar land price zones with considerable accuracy levels, which are verified with some test statistics and real comparative standard land parcels done by manually.