Journal of the Institute of Electronics Engineers of Korea SC
/
v.46
no.3
/
pp.52-58
/
2009
If a moving target has a linear characteristics, the Kalman filter can estimate relatively accurate the location of a target, but this performance depends on how the dynamic status characteristics of the target is accurately modeled. In many practical problems of tracking a maneuvering target, a simple kinematic model can fairly accurately describe the target dynamics for a wide class of maneuvers. However, since the target can exhibit a wide range of dynamic characteristics, no fixed SKF(Simple Kalman filter) can be matched to estimate, to the required accuracy, the states of the target for every specific maneuver. In this paper, a new AKF(Active Kalman filter) is proposed to solve this problem The process noise covariance level of the Kalman filter is adjusted at each time step according to the study result which uses the neural network algorithm. It is demonstrated by means of a computer simulation that the tracking capability of the proposed AKF(Active Kalman filter) is better than that of the SKF(Simple Kalman Filter).
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.4
/
pp.219-231
/
2019
The specifications of signboards are set for each type of signboards, but the shape and size of the signboard actually installed are not uniform. In addition, because the colors of the signboard are not defined, so various colors are applied to the signboard. Methods for recognizing signboards can be thought of as similar methods of recognizing road signs and license plates, but due to the nature of the signboards, there are limitations in that the signboards can not be recognized in a way similar to road signs and license plates. In this study, we proposed a methodology for recognizing plate-type signboards, which are the main targets of illegal and old signboards, and automatically extracting areas of signboards, using the deep learning-based Faster R-CNN algorithm. The process of recognizing flat type signboards through signboard images captured by using smartphone cameras is divided into two sequences. First, the type of signboard was recognized using deep learning to recognize flat type signboards in various types of signboard images, and the result showed an accuracy of about 71%. Next, when the boundary recognition algorithm for the signboards was applied to recognize the boundary area of the flat type signboard, the boundary of flat type signboard was recognized with an accuracy of 85%.
Lane tracking and obstacle avoidance are considered two of the key technologies on an unmanned ground vehicle system. In this paper, we propose a method of lane tracking and obstacle avoidance, which can be expressed as vehicle control, modeling, and sensor experiments. First, obstacle avoidance consists of two parts: a longitudinal control system for acceleration and deceleration and a lateral control system for steering control. Each system is used for unmanned ground vehicle control, which notes the vehicle's location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacle and perform obstacle avoidance on the road, which involves vehicle velocity. Second, we explain a method of lane tracking by means of a vision system, which consists of two parts: First, vehicle control is included in the road model through lateral and longitudinal control. Second, the image processing method deals with the lane tracking method, the image processing algorithm, and the filtering method. Finally, in this paper, we propose a method for vehicle control, modeling, lane tracking, and obstacle avoidance, which are confirmed through vehicles tests.
Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.
When a film company decides whether to invest or not in a scenario is the appropriate time to predict box office success. In response to market demands, AI based scenario analysis service has been launched, yet the algorithm is by no means perfect. The purpose of this study is to present a prediction model of movie scenario's box office hit based on human brain processing mechanism. In order to derive patterns of visual, auditory, and cognitive stimuli on the time spectrum of box office animation hit, this study applied Weber's law and brain mechanism. The results are as follow. First, the frequency of brain stimulation in the biggest box office movies was 1.79 times greater than that in the failure movies. Second, in the box office success, the cognitive stimuli codes are spread evenly, whereas in the failure, concentrated among few intervals. Third, in the box office success movie, cognitive stimuli which have big cognition load appeared alone, whereas visual and auditory stimuli which have little cognitive load appeared simultaneously.
Journal of the Institute of Electronics Engineers of Korea TE
/
v.39
no.3
/
pp.97-104
/
2002
In this paper we describe the method which optimizes the partition of the input space by means of measure of fuzziness for fuzzy neural network. It covers its generation of fuzzy rules for input sub space. It verifies the performance of the system depended on the various time interval of the input. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rule base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. According to the input interval the proposed inference procedure proves that the fast convergence of root mean square error (RMSE) owes to the optimal partition of the input space
Kim, Hoyong;Lee, SeungWoo;Jang, Hong-Jun;Seo, DongMin
The Journal of the Korea Contents Association
/
v.20
no.6
/
pp.556-578
/
2020
There are many different researches about how to analyze issues based on real-time news streams. But, there are few researches which analyze issues hierarchically from news articles and even a previous research of hierarchical issue analysis make clustering speed slower as the increment of news articles. In this paper, we propose a hierarchical and incremental clustering for semi real-time issue analysis on news articles. We trained siamese neural network based weighted cosine similarity model, applied this model to k-means algorithm which is used to make word clusters and converted news articles to document vectors by using these word clusters. Finally, we initialized an issue cluster tree from document vectors, updated this tree whenever news articles happen, and analyzed issues in semi real-time. Through the experiment and evaluation, we showed that up to about 0.26 performance has been improved in terms of NMI. Also, in terms of speed of incremental clustering, we also showed about 10 times faster than before.
The Transactions of the Korea Information Processing Society
/
v.3
no.7
/
pp.1669-1679
/
1996
In this paper, we address the problem of how to replace huffers in multimedia database systems with time-varying skewed data access. The access pattern in the multimedia database system to support audio-on-demand and video-on-demand services is generally skewed with a few popular objects. In addition the access pattem of the skewed objects has a time-varying property. In such situations, our analysis indicates that conventional LRU(least Recently Used) and LFU(Least Frequently Used) schemes for buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural suited. We propose a new buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural Networks)using a neural network for multimedia database systems with time-varying skewed data access. The major role of our neural network classifies multimedia objects into two classes:a hot set frequently accessed with great popularity and a cold set randomly accessed with low populsrity. For the classification, the inter-arrival time values of sample objects are employed to train the neural network.Our algorithm partitions buffers into two regions to combine the best roperties of LRU and LFU.One region, which contains the 핫셋 objects, is managed by LFU replacement and the other region , which contains the cold set objects , is managed by LRUreplacement.We performed simulation experiments in an actual environment with time-varying skewed data accsee to compare our algorithm to LRU, LFU, and LRU-k which is a variation of LRU. Simulation resuults indicate that our proposed algorthm provides better performance as compared to the other algorithms. Good performance of the neural network-based replacement scheme means that this new approach can be also suited as an alternative to the existing page replacement and prefetching algorithms in virtual memory systems.
Journal of the Korean Society for information Management
/
v.35
no.1
/
pp.231-250
/
2018
In this paper, we propose a new methodology for extracting and formalizing subjective topics at a specific time using a set of keywords extracted automatically from online news articles. To do this, we first extracted a set of keywords by applying TF-IDF methods selected by a series of comparative experiments on various statistical weighting schemes that can measure the importance of individual words in a large set of texts. In order to effectively calculate the semantic relation between extracted keywords, a set of word embedding vectors was constructed by using about 1,000,000 news articles collected separately. Individual keywords extracted were quantified in the form of numerical vectors and clustered by K-means algorithm. As a result of qualitative in-depth analysis of each keyword cluster finally obtained, we witnessed that most of the clusters were evaluated as appropriate topics with sufficient semantic concentration for us to easily assign labels to them.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.3
/
pp.607-614
/
2016
In generating station, cable spreading design is a very important task, which is very much time consuming, due to the type of cable used in generating station is very diverse. The raceway means the cable line section from source equipment to destination, and consists of cable tray and conduit. The process of existing cable spreading design was written in by hand. Thereby, there are grossly inefficient gain such as cable omission and unfixed fill value by a personal and time investment. In this paper, we proposed and implemented the automated cable route design based flexible cable fill check in generating station, and proposed the automated cable route design can be calculated the cable fill with flexible changing of raceway. Some experimental result shows that implemented cable route design is well performed and conducted as the design specifications, and it will be able to reduce the cable spreading design time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.