• Title/Summary/Keyword: K-Means 알고리즘

Search Result 770, Processing Time 0.026 seconds

Study on Improvement of Target Tracking Performance for RASIT(RAdar of Surveillance for Intermediate Terrain) Using Active Kalman filter (능동형 Kalman filter를 이용한 지상감시레이더의 표적탐지능력 향상에 관한 연구)

  • Myung, Sun-Yang;Chun, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.52-58
    • /
    • 2009
  • If a moving target has a linear characteristics, the Kalman filter can estimate relatively accurate the location of a target, but this performance depends on how the dynamic status characteristics of the target is accurately modeled. In many practical problems of tracking a maneuvering target, a simple kinematic model can fairly accurately describe the target dynamics for a wide class of maneuvers. However, since the target can exhibit a wide range of dynamic characteristics, no fixed SKF(Simple Kalman filter) can be matched to estimate, to the required accuracy, the states of the target for every specific maneuver. In this paper, a new AKF(Active Kalman filter) is proposed to solve this problem The process noise covariance level of the Kalman filter is adjusted at each time step according to the study result which uses the neural network algorithm. It is demonstrated by means of a computer simulation that the tracking capability of the proposed AKF(Active Kalman filter) is better than that of the SKF(Simple Kalman Filter).

Recognition of Flat Type Signboard using Deep Learning (딥러닝을 이용한 판류형 간판의 인식)

  • Kwon, Sang Il;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.219-231
    • /
    • 2019
  • The specifications of signboards are set for each type of signboards, but the shape and size of the signboard actually installed are not uniform. In addition, because the colors of the signboard are not defined, so various colors are applied to the signboard. Methods for recognizing signboards can be thought of as similar methods of recognizing road signs and license plates, but due to the nature of the signboards, there are limitations in that the signboards can not be recognized in a way similar to road signs and license plates. In this study, we proposed a methodology for recognizing plate-type signboards, which are the main targets of illegal and old signboards, and automatically extracting areas of signboards, using the deep learning-based Faster R-CNN algorithm. The process of recognizing flat type signboards through signboard images captured by using smartphone cameras is divided into two sequences. First, the type of signboard was recognized using deep learning to recognize flat type signboards in various types of signboard images, and the result showed an accuracy of about 71%. Next, when the boundary recognition algorithm for the signboards was applied to recognize the boundary area of the flat type signboard, the boundary of flat type signboard was recognized with an accuracy of 85%.

Unmanned Ground Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance (충돌회피 및 차선추적을 위한 무인자동차의 제어 및 모델링)

  • Yu, Hwan-Shin;Kim, Sang-Gyum
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.359-370
    • /
    • 2007
  • Lane tracking and obstacle avoidance are considered two of the key technologies on an unmanned ground vehicle system. In this paper, we propose a method of lane tracking and obstacle avoidance, which can be expressed as vehicle control, modeling, and sensor experiments. First, obstacle avoidance consists of two parts: a longitudinal control system for acceleration and deceleration and a lateral control system for steering control. Each system is used for unmanned ground vehicle control, which notes the vehicle's location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacle and perform obstacle avoidance on the road, which involves vehicle velocity. Second, we explain a method of lane tracking by means of a vision system, which consists of two parts: First, vehicle control is included in the road model through lateral and longitudinal control. Second, the image processing method deals with the lane tracking method, the image processing algorithm, and the filtering method. Finally, in this paper, we propose a method for vehicle control, modeling, lane tracking, and obstacle avoidance, which are confirmed through vehicles tests.

  • PDF

A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT (마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.

A Study on Development of Disney Animation's Box-office Prediction AI Model Based on Brain Science (뇌과학 기반의 디즈니 애니메이션 흥행 예측 AI 모형 개발 연구)

  • Lee, Jong-Eun;Yang, Eun-Young
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.405-412
    • /
    • 2018
  • When a film company decides whether to invest or not in a scenario is the appropriate time to predict box office success. In response to market demands, AI based scenario analysis service has been launched, yet the algorithm is by no means perfect. The purpose of this study is to present a prediction model of movie scenario's box office hit based on human brain processing mechanism. In order to derive patterns of visual, auditory, and cognitive stimuli on the time spectrum of box office animation hit, this study applied Weber's law and brain mechanism. The results are as follow. First, the frequency of brain stimulation in the biggest box office movies was 1.79 times greater than that in the failure movies. Second, in the box office success, the cognitive stimuli codes are spread evenly, whereas in the failure, concentrated among few intervals. Third, in the box office success movie, cognitive stimuli which have big cognition load appeared alone, whereas visual and auditory stimuli which have little cognitive load appeared simultaneously.

The Optimal Partition of Initial Input Space for Fuzzy Neural System : Measure of Fuzziness (퍼지뉴럴 시스템을 위한 초기 입력공간분할의 최적화 : Measure of Fuzziness)

  • Baek, Deok-Soo;Park, In-Kue
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.97-104
    • /
    • 2002
  • In this paper we describe the method which optimizes the partition of the input space by means of measure of fuzziness for fuzzy neural network. It covers its generation of fuzzy rules for input sub space. It verifies the performance of the system depended on the various time interval of the input. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rule base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. According to the input interval the proposed inference procedure proves that the fast convergence of root mean square error (RMSE) owes to the optimal partition of the input space

Hierarchical and Incremental Clustering for Semi Real-time Issue Analysis on News Articles (준 실시간 뉴스 이슈 분석을 위한 계층적·점증적 군집화)

  • Kim, Hoyong;Lee, SeungWoo;Jang, Hong-Jun;Seo, DongMin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.556-578
    • /
    • 2020
  • There are many different researches about how to analyze issues based on real-time news streams. But, there are few researches which analyze issues hierarchically from news articles and even a previous research of hierarchical issue analysis make clustering speed slower as the increment of news articles. In this paper, we propose a hierarchical and incremental clustering for semi real-time issue analysis on news articles. We trained siamese neural network based weighted cosine similarity model, applied this model to k-means algorithm which is used to make word clusters and converted news articles to document vectors by using these word clusters. Finally, we initialized an issue cluster tree from document vectors, updated this tree whenever news articles happen, and analyzed issues in semi real-time. Through the experiment and evaluation, we showed that up to about 0.26 performance has been improved in terms of NMI. Also, in terms of speed of incremental clustering, we also showed about 10 times faster than before.

ABRN:An Adaptive Buffer Replacement for On-Demand Multimedia Database Service Systems (ABRN:주문형 멀티미디어 데이터 베이스 서비스 시스템을 위한 버퍼 교체 알고리즘)

  • Jeong, Gwang-Cheol;Park, Ung-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1669-1679
    • /
    • 1996
  • In this paper, we address the problem of how to replace huffers in multimedia database systems with time-varying skewed data access. The access pattern in the multimedia database system to support audio-on-demand and video-on-demand services is generally skewed with a few popular objects. In addition the access pattem of the skewed objects has a time-varying property. In such situations, our analysis indicates that conventional LRU(least Recently Used) and LFU(Least Frequently Used) schemes for buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural suited. We propose a new buffer replacement algorithm(ABRN:Adaptive Buffer Replacement using Neural Networks)using a neural network for multimedia database systems with time-varying skewed data access. The major role of our neural network classifies multimedia objects into two classes:a hot set frequently accessed with great popularity and a cold set randomly accessed with low populsrity. For the classification, the inter-arrival time values of sample objects are employed to train the neural network.Our algorithm partitions buffers into two regions to combine the best roperties of LRU and LFU.One region, which contains the 핫셋 objects, is managed by LFU replacement and the other region , which contains the cold set objects , is managed by LRUreplacement.We performed simulation experiments in an actual environment with time-varying skewed data accsee to compare our algorithm to LRU, LFU, and LRU-k which is a variation of LRU. Simulation resuults indicate that our proposed algorthm provides better performance as compared to the other algorithms. Good performance of the neural network-based replacement scheme means that this new approach can be also suited as an alternative to the existing page replacement and prefetching algorithms in virtual memory systems.

  • PDF

A Study on the Deduction of Social Issues Applying Word Embedding: With an Empasis on News Articles related to the Disables (단어 임베딩(Word Embedding) 기법을 적용한 키워드 중심의 사회적 이슈 도출 연구: 장애인 관련 뉴스 기사를 중심으로)

  • Choi, Garam;Choi, Sung-Pil
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.1
    • /
    • pp.231-250
    • /
    • 2018
  • In this paper, we propose a new methodology for extracting and formalizing subjective topics at a specific time using a set of keywords extracted automatically from online news articles. To do this, we first extracted a set of keywords by applying TF-IDF methods selected by a series of comparative experiments on various statistical weighting schemes that can measure the importance of individual words in a large set of texts. In order to effectively calculate the semantic relation between extracted keywords, a set of word embedding vectors was constructed by using about 1,000,000 news articles collected separately. Individual keywords extracted were quantified in the form of numerical vectors and clustered by K-means algorithm. As a result of qualitative in-depth analysis of each keyword cluster finally obtained, we witnessed that most of the clusters were evaluated as appropriate topics with sufficient semantic concentration for us to easily assign labels to them.

Automated Cable Route Design based Flexible Cable Fill Check of Raceway in Cable Spreading of Generating Station (발전소 케이블 포설에서 Raceway의 유연한 케이블 Fill 체크 기반 자동화된 케이블 라우팅 설계)

  • Park, Ki-Hong;Lee, Yang Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.607-614
    • /
    • 2016
  • In generating station, cable spreading design is a very important task, which is very much time consuming, due to the type of cable used in generating station is very diverse. The raceway means the cable line section from source equipment to destination, and consists of cable tray and conduit. The process of existing cable spreading design was written in by hand. Thereby, there are grossly inefficient gain such as cable omission and unfixed fill value by a personal and time investment. In this paper, we proposed and implemented the automated cable route design based flexible cable fill check in generating station, and proposed the automated cable route design can be calculated the cable fill with flexible changing of raceway. Some experimental result shows that implemented cable route design is well performed and conducted as the design specifications, and it will be able to reduce the cable spreading design time.