• Title/Summary/Keyword: K-Means 알고리즘

Search Result 770, Processing Time 0.048 seconds

The Indoor Localization Algorithm using the Difference Means based on Fingerprint in Moving Wi-Fi Environment (이동 Wi-Fi 환경에서 핑거프린트 기반의 Difference Means를 이용한 실내 위치추정 알고리즘)

  • Kim, Tae-Wan;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1463-1471
    • /
    • 2016
  • The indoor localization algorithm using the Difference Means based on Fingerprint (DMFPA) to improve the performance of indoor localization in moving Wi-Fi environment is proposed in this paper. In addition to this, the performance of the proposed algorithm is also compared with the Original Fingerprint Algorithm (OFPA) and the Gaussian Distribution Fingerprint Algorithm (GDFPA) by our developed indoor localization simulator. The performance metrics are defined as the accuracy of the average localization accuracy; the average/maximum cumulative distance of the occurred errors and the average measurement time in each reference point.

Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계)

  • Roh, Seok-Beom;Hwang, Eun-Jin;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.

Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence (인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석)

  • Lee, Seo Gyeong;Kim, Dongsu;Kim, Kyungdong;Kim, Young Do;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF

EM Algorithm with Initialization Based on Incremental ${\cal}k-means$ for GMM and Its Application to Speaker Identification (GMM을 위한 점진적 ${\cal}k-means$ 알고리즘에 의해 초기값을 갖는 EM알고리즘과 화자식별에의 적용)

  • Seo Changwoo;Hahn Hernsoo;Lee Kiyong;Lee Younjeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.141-149
    • /
    • 2005
  • Tn general. Gaussian mixture model (GMM) is used to estimate the speaker model from the speech for speaker identification. The parameter estimates of the GMM are obtained by using the Expectation-Maximization (EM) algorithm for the maximum likelihood (ML) estimation. However the EM algorithm has such drawbacks that it depends heavily on the initialization and it needs the number of mixtures to be known. In this paper, to solve the above problems of the EM algorithm. we propose an EM algorithm with the initialization based on incremental ${\cal}k-means$ for GMM. The proposed method dynamically increases the number of mixtures one by one until finding the optimum number of mixtures. Whenever adding one mixture, we calculate the mutual relationship between it and one of other mixtures respectively. Finally. based on these mutual relationships. we can estimate the optimal number of mixtures which are statistically independent. The effectiveness of the proposed method is shown by the experiment for artificial data. Also. we performed the speaker identification by applying the proposed method comparing with other approaches.

Classification for Landfast Ice Types in the Greenland of the Arctic by Using Multifrequency SAR Images (다중주파수 SAR 영상을 이용한 북극해 그린란드 정착빙 분류)

  • Hwang, Do-Hyun;Hwang, Byongjun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • To classify the landfast ice in the north of the Greenland, observation data, multifrequency Synthetic Aperture Radar (SAR) images and texture images were used. The total four types of sea ice are first year ice, highly deformed ice, ridge and moderately deformed ice. The texture images that were processed by K-means algorithm showed higher accuracy than the ones that were processed by SAR images; however, overall accuracy of maximum likelihood algorithm using texture images did not show the highest accuracy all the time. It turned out that when using K-means algorithm, the accuracy of the multi SAR images were higher than the single SAR image. When using the maximum likelihood algorithm, the results of single and multi SAR images are differ from each other, therefore, maximum likelihood algorithm method should be used properly.

The Enhancement of Learning Time in Fuzzy c-means algorithm (학습시간을 개선한 Fuzzy c-means 알고리즘)

  • 김형철;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.113-116
    • /
    • 2001
  • The conventional K-means algorithm is widely used in vector quantizer design and clustering analysis. Recently modified K-means algorithm has been proposed where the codevector updating step is as fallows: new codevector = current codevector + scale factor (new centroid - current codevector). This algorithm uses a fixed value for the scale factor. In this paper, we propose a new algorithm for the enhancement of learning time in fuzzy c-means a1gorithm. Experimental results show that the proposed method produces codebooks about 5 to 6 times faster than the conventional K-means algorithm with almost the same Performance.

  • PDF

K-means clustering using a center of gravity for grid-based sample (그리드 기반 표본의 무게중심을 이용한 케이-평균군집화)

  • Lee, Sun-Myung;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Data Clustering Algorithm Adaptive to Data Forms (데이터 형태에 적응하는 클러스터링 알고리즘)

  • Lee, K.H.;Lee, K.C.
    • Annual Conference of KIPS
    • /
    • 2000.10b
    • /
    • pp.1433-1436
    • /
    • 2000
  • 클러스터링에 있어서 k-means[7], DBSCAN[2], CURE[4], ROCK[5], PAM[8], 같은 기존의 알고리즘은 원형이나 타원형 등의 어느 고정된 모양에 의해 클러스터를 결정한다. 만약 클러스터 하려는 데이터의 분포가 우연히 알고리즘의 결정된 모양과 일치하면 정확한 해를 얻을 수 있다. 하지만 자연적인 데이터의 분포에서는 발생하기 어렵다. 데이터의 형태를 추적하여 이러한 문제점을 해결한 CHAMELEON[1] 알고리즘이 최근에 발표되었다. 하지만 모양에는 독립적이나 데이터의 양이 증가함에 따라 소요되는 시간이 폭발적으로 증가한다. 이것은 기존의 마이닝 데이터들이 대용량이라는 것을 고려하면 현실에 적용하기 힘든 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 K-means[7]]를 이용한 대표를 선출하는 방법으로 CHAMELEON[1]의 문제점 개선(EF-CHAMELEON)을 시도하였으며 여러 자연적인 형태의 도형들은 아주 작은 원형들의 집합으로 구성 될 수 있다는 생각을 기본으로 잡음에 영향을 받지 않을 정도로 아주 작은 초기 다수의 소형 클러스터를 K-mean을 이용하여 구성하고 이를 다시 크러스터간의 상대적인 거리를 이용하여 다시 머지 하는 방법으로 모양에 의존적인 문제를 해결하며 비교사 학습(unsupervised learning)에 충실하기 위해 임계값을 적용 적정 단계에서 알고리즘을 멈추게 한 ADF 알고리즘을 소개한다. 실험 데이터는 기존의 여러 클러스터링 알고리즘이 판별 할 수 없었던 다양한 모양을 가지고있는 2차원 배열을 사용하여 ADF. CHAMELEON[1], EF-CHAMELEON,의 성능을 비교하였다.

  • PDF

A Study on True Ortho-photo Generation Using Epipolar Geometry and Classification Algorithm (에피폴라 기하와 군집화 알고리즘을 이용한 정밀 정사투영영상 제작에 관한 연구)

  • Oh, Kum-Hui;Hwang, Hyun-Deok;Kim, Jun-Chul;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.633-641
    • /
    • 2008
  • This study introduces the method of detecting and restoring occlusion areas by using epipolar algorithm and K-means classification algorithm for true ortho-photo generation. In the past, the techniques of detecting occlusion areas are using the reference images or information of buildings. But, in this study the occlusion areas can be automatically detected by using DTM data and exterior orientation parameters. The detected occlusion areas can be restored by using anther images or the computed values which are determined in K-means classification algorithm. In addition, this method takes advantages of applying epipolar algorithm in order to find same location in overlapping areas among images.