• Title/Summary/Keyword: K-Means 알고리즘

Search Result 770, Processing Time 0.04 seconds

An Implementation of K-Means Algorithm Improving Cluster Centroids Decision Methodologies (클러스터 중심 결정 방법을 개선한 K-Means 알고리즘의 구현)

  • Lee Shin-Won;Oh HyungJin;An Dong-Un;Jeong Seong-Jong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.867-874
    • /
    • 2004
  • K-Means algorithm is a non-hierarchical (plat) and reassignment techniques and iterates algorithm steps on the basis of K cluster centroids until the clustering results converge into K clusters. In its nature, K-Means algorithm has characteristics which make different results depending on the initial and new centroids. In this paper, we propose the modified K-Means algorithm which improves the initial and new centroids decision methodologies. By evaluating the performance of two algorithms using the 16 weighting scheme of SMART system, the modified algorithm showed $20{\%}$ better results on recall and F-measure than those of K-Means algorithm, and the document clustering results are quite improved.

The Effect of Variable Learning Weights in Fuzzy c-means algorithm (Fuzzy c-means 알고리즘에서의 가변학습 가중치의 효과)

  • 박소희;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.109-112
    • /
    • 2001
  • 기존의 K-means 알고리즘은 학습벡터가 단일군집에 할당되는 방법이 crisp 이므로 다른 군집에 할당될 확률을 무시하게 된다. 따라서 군집화 작업과 관련하여 반복적인 코드북 설계 과정에서 각 학습벡터를 다중 군집으로 할당하는 Fuzzy c-means를 사용한다. 또한 Fuzzy c-means 알고리즘의 학습과정에서 구해지는 각 클래스 의 프로토타입에 가중치를 곱하여 다음 학습의 프로토타입으로 사용함으로써 Fuzzy c-means 알고리즘 적용 결과 얻어지는 코트북의 성능을 기존 알고리즘과 비교하여 개선된 Fuzzy c-means 알고리즘을 찾기 위한 근거를 마련한다.

  • PDF

The Document Clustering using Multi-Objective Genetic Algorithms (다목적 유전자 알고리즘을 이용한문서 클러스터링)

  • Lee, Jung-Song;Park, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • In this paper, the multi-objective genetic algorithm is proposed for the document clustering which is important in the text mining field. The most important function in the document clustering algorithm is to group the similar documents in a corpus. So far, the k-means clustering and genetic algorithms are much in progress in this field. However, the k-means clustering depends too much on the initial centroid, the genetic algorithm has the disadvantage of coming off in the local optimal value easily according to the fitness function. In this paper, the multi-objective genetic algorithm is applied to the document clustering in order to complement these disadvantages while its accuracy is analyzed and compared to the existing algorithms. In our experimental results, the multi-objective genetic algorithm introduced in this paper shows the accuracy improvement which is superior to the k-means clustering(about 20 %) and the general genetic algorithm (about 17 %) for the document clustering.

Clustering load patterns recorded from advanced metering infrastructure (AMI로부터 측정된 전력사용데이터에 대한 군집 분석)

  • Ann, Hyojung;Lim, Yaeji
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.969-977
    • /
    • 2021
  • We cluster the electricity consumption of households in A-apartment in Seoul, Korea using Hierarchical K-means clustering algorithm. The data is recorded from the advanced metering infrastructure (AMI), and we focus on the electricity consumption during evening weekdays in summer. Compare to the conventional clustering algorithms, Hierarchical K-means clustering algorithm is recently applied to the electricity usage data, and it can identify usage patterns while reducing dimension. We apply Hierarchical K-means algorithm to the AMI data, and compare the results based on the various clustering validity indexes. The results show that the electricity usage patterns are well-identified, and it is expected to be utilized as a major basis for future applications in various fields.

An Efficient Clustering Method based on Multi Centroid Set using MapReduce (맵리듀스를 이용한 다중 중심점 집합 기반의 효율적인 클러스터링 방법)

  • Kang, Sungmin;Lee, Seokjoo;Min, Jun-ki
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.494-499
    • /
    • 2015
  • As the size of data increases, it becomes important to identify properties by analyzing big data. In this paper, we propose a k-Means based efficient clustering technique, called MCSKMeans (Multi centroid set k-Means), using distributed parallel processing framework MapReduce. A problem with the k-Means algorithm is that the accuracy of clustering depends on initial centroids created randomly. To alleviate this problem, the MCSK-Means algorithm reduces the dependency of initial centroids using sets consisting of k centroids. In addition, we apply the agglomerative hierarchical clustering technique for creating k centroids from centroids in m centroid sets which are the results of the clustering phase. In this paper, we implemented our MCSK-Means based on the MapReduce framework for processing big data efficiently.

Efficient K-means Clustering for High-dimensional Large Data (고차원 대규모 데이터를 위한 효율적인 K-means 클러스터링)

  • Yoon, Tae-Sik;Shim, Kyu-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.33-36
    • /
    • 2011
  • 클러스터링은 데이터 포인트들을 그룹으로 묶어 데이터를 분석하는데 유용하다. 특히 K-means는 가장 널리 쓰이는 클러스터링 알고리즘으로 k개의 군집(Cluster)을 찾는다. 본 논문에서는 기존의 K-means 알고리즘과 비교해 고차원 대규모데이터에 대해서 효율적으로 동작하는 K-means 알고리즘을 제안한다. 제안된 알고리즘은 기존의 알고리즘에서와 같이 거리 정보를 이용해 불필요한 계산을 줄여나가며 또한 움직임 없는 군집들을 계산에서 제외하여 수행시간을 단축한다. 제안된 알고리즘은 기존의 관련연구에서 제안된 알고리즘에 비해 공간을 적게 쓰면서 동시에 빠르다. 실제 고차원 데이터 실험을 통해서 제안된 알고리즘의 효율성을 보였다.

Fast K-Means Clustering Algorithm using Prediction Data (예측 데이터를 이용한 빠른 K-Means 알고리즘)

  • Jee, Tae-Chang;Lee, Hyun-Jin;Lee, Yill-Byung
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.106-114
    • /
    • 2009
  • In this paper we proposed a fast method for a K-Means Clustering algorithm. The main characteristic of this method is that it uses precalculated data which possibility of change is high in order to speed up the algorithm. When calculating distance to cluster centre at each stage to assign nearest prototype in the clustering algorithm, it could reduce overall computation time by selecting only those data with possibility of change in cluster is high. Calculation time is reduced by using the distance information produced by K-Means algorithm when computing expected input data whose cluster may change, and by using such distance information the algorithm could be less affected by the number of dimensions. The proposed method was compared with original K-Means method - Lloyd's and the improved method KMHybrid. We show that our proposed method significantly outperforms in computation speed than Lloyd's and KMHybrid when using large size data which has large amount of data, great many dimensions and large number of clusters.

A Codebook Generation Algorithm Using a New Updating Condition (새로운 갱신조건을 적용한 부호책 생성 알고리즘)

  • 김형철;조제황
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.205-209
    • /
    • 2004
  • The K-means algorithm is the most widely used method among the codebook generation algorithms in vector quantization. In this paper, we propose a codebook generation algorithm using a new updating condition to enhance the codebook performance. The conventional K-means algorithm uses a fixed weight of the distance for all training iterations, but the proposed method uses different weights according to the updating condition from the new codevectors for training iterations. Then, different weights can be applied to generate codevectors at each iteration according to this condition, and it can have a similar effect to variable weights. Experimental results show that the proposed algorithm has the better codebook performance than that of K-means algorithm.

  • PDF

An Efficient K-means Clustering Algorithm using Prediction (예측을 이용한 효율적인 K-Means 알고리즘)

  • Tae-Chang Jee;Hyunjin Lee;Yillbyung Lee
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.3-4
    • /
    • 2008
  • 본 논문에서 k-means 군집화 알고리즘을 효율적으로 적용하는 방법을 제안했다. 제안하는 알고리즘의 특징을 속도 향상을 위해 예측 데이터를 이용한 것이다. 군집화 알고리즘의 각 단계에서 군집을 변경할 데이터만 최인접 군집을 계산함으로써 계산 시간을 줄일 수 있었다. 제안하는 알고리즘의 성능 비교를 위해서 KMHybrid 와 비교했다. 제안하는 알고리즘은 데이터의 차원이 큰 경우에 KMHybrid 보다 높은 속도 향상을 보였다.

An Implementation of K-Means Algorithm improving cluster centroids decision methodologies (클러스터 중심 결정 방법을 개선한 K-Means Algorithm의 구현)

  • Cho, Si-Sung;Kim, Ho-Young;Oh, Hyung-Jin;Lee, Shin-Won;An, Dong-Un;Chung, Sung-Jong
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.373-376
    • /
    • 2002
  • K-Means 알고리즘은 재배치 기법의 일종으로 K 개의 초기 클러스터중심(centroid)를 중심으로 K 개의 클러스터가 될 때까지 클러스터링을 반복하는 것이다. K-Means 알고리즘은 특성상 초기 클러스터 중심과 새롭게 생성된 클러스터 중심에 따라 클러스터링 결과가 달라진다. 본 논문에서는 K-Means Algorithm 의 초기 클러스터중심 선택 방법과 새로운 클러스터 중심 결정 방법을 개선한 변형 K-Means Algorithm을 제안한다. SMART 시스템에서 제안한 16가지 가중치 계산 방식에 의하여 두 알고리즘의 성능을 평가한 결과 제안한 변형 알고리즘이 재현률과 F-Measure 에서 20%이상 향상된 결과를 얻을 수 있었으며 특정 주제 아래 문서가 할당되는 클러스터링 성능이 우수하였다.

  • PDF