• 제목/요약/키워드: K-MEANS

검색결과 17,920건 처리시간 0.042초

K-means 알고리듬을 이용한 비정상 사운드 검출 (Irregular Sound Detection using the K-means Algorithm)

  • 정의필;이재열;조상진
    • 융합신호처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.23-26
    • /
    • 2005
  • 산업 시설 등에서 운전 중인 회전 기계의 동작, 감시, 진단은 설비의 효율적인 운용 및 사고 방지 등을 위해 매우 중요한 일이다. 이상 진단 기술은 기기에 설치된 센서로부터 취득된 데이터의 특징을 추출하는 것과 분류된 데이터를 이용해 정상 또는 이상으로 구분하거나 이상의 원인을 분석하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법 등이 적용되어 왔다. 본 논문에서는 운전되고 있는 정상/비정상 상태를 분류하기 위하여 기기들의 사운드 정보를 획득하여 웨이블렛 변환을 거쳐 주파수 대역별 신호를 나누었다. 나누어진 대역별 신호의 RMS값으로 입력벡터를 구성하고 이 입력벡터에 K-means 방법을 적용하여 정상 및 비정상 상태의 모델을 결정한다. 결정된 정상 및 비정상 상태의 모델과 입력 벡터를 비교하여 입력 신호의 정상/비정상을 판단한다.

  • PDF

다중 이동 로봇을 이용한 센서 네트워크의 충전 (Charging of Sensor Network using Multiple Mobile Robots)

  • 문찬우
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.345-350
    • /
    • 2021
  • 넓은 지역에 설치되는 센서 네트워크 시스템은 유지 관리가 문제가 되어 왔으며, 이를 해결하기 위해 로봇을 사용하여 센서 네트워크에 에너지를 공급하려는 연구가 여러 연구자에 의해 수행되었다. 이 연구에서는 전력을 공급하는 노드들과 그 주변의 센서 노드들로 이루어진 센서 네트워크에 여러 대의 로봇을 사용하여 에너지를 공급하는 문제에서, 로봇이 최소 거리를 이동하도록 수정된 k-means 알고리즘을 사용하여 각 로봇이 작업할 영역을 분할하는 방법을 제안한다. 로봇의 에너지 전달률을 변수로 한 시뮬레이션 실험을 통해 분할된 각 영역의 센서 노드들이 동작을 유지할 수 있음을 보임으로써 제안한 수정 k-means 알고리즘의 타당성을 검증한다.

Prediction of Energy Consumption in a Smart Home Using Coherent Weighted K-Means Clustering ARIMA Model

  • Magdalene, J. Jasmine Christina;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.177-182
    • /
    • 2022
  • Technology is progressing with every passing day and the enormous usage of electricity is becoming a necessity. One of the techniques to enjoy the assistances in a smart home is the efficiency to manage the electric energy. When electric energy is managed in an appropriate way, it drastically saves sufficient power even to be spent during hard time as when hit by natural calamities. To accomplish this, prediction of energy consumption plays a very important role. This proposed prediction model Coherent Weighted K-Means Clustering ARIMA (CWKMCA) enhances the weighted k-means clustering technique by adding weights to the cluster points. Forecasting is done using the ARIMA model based on the centroid of the clusters produced. The dataset for this proposed work is taken from the Pecan Project in Texas, USA. The level of accuracy of this model is compared with the traditional ARIMA model and the Weighted K-Means Clustering ARIMA Model. When predicting,errors such as RMSE, MAPE, AIC and AICC are analysed, the results of this suggested work reveal lower values than the ARIMA and Weighted K-Means Clustering ARIMA models. This model also has a greater loglikelihood, demonstrating that this model outperforms the ARIMA model for time series forecasting.

하악 중심위 유도방법에 따른 하악위의 재현성 및 변위량에 관한 비교연구(LEAF GAUGES의 사용을 중심으로) (A COMPARATIVE STUDY ON THE REPRODUCIBILITY AND THE DISPLACEMENT OF CENTRIC RELATION RECORDS (BETWEEN LEAF GAUGES AND OTHER METHODS))

  • 최진웅;최대균;박남수;최부병
    • 대한치과보철학회지
    • /
    • 제26권1호
    • /
    • pp.133-151
    • /
    • 1988
  • The objectives of this study were to compare the position of centric relation guided by means of leaf gauges, bilateral manipulation, chin-point guidance with Lucia jig and self-guided method and the reproducibility, respectively. A Veri-check (Denar Co., Anaheim, California) was employed for examining, and the displacement of position and reproducibility were verified. The following results were obtained. 1. On the sagittal plane, the centric relation guided by means of leaf gauges showed greater posterior displacement than that by means of bilateral manipulation and less than that by means of chin-point guidance with Lucia jig, and self-guided centric relation showed least posterior displacement. The centric relation guided by means of bilateral manipulation showed greater superior displacement than that by means of chin-point guidance with Lucia jig and less than that by means of leaf gauges and self-guided centric relation showed least superior displacement. 2. On the horizontal plane, the centric relation guided by means of chin-point guidance with Lucia jig showed greater posterior displacement than that of bilateral manipulation and less than that leaf gauges, however the self-guided centric relation showed slightly anterior displacement. 3. The anteroposterior displacement measured on sagittal plane and horizontal plane were highly correlated. (p<0.05). 4. The reproducibility of centric relation guided by means of leaf gauges, bilateral manipulation and chin-point guidance with Lucia jig were similar and more reproducible than self-guided centric relation.

  • PDF

퍼지 C-Means 클러스터링을 이용한 요부 초음파 영상의 양자화 (The Quantization of Lumbar Ultrasonographic Images using Fuzzy C-Means Clustering)

  • 홍동진;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제47차 동계학술대회논문집 21권1호
    • /
    • pp.301-302
    • /
    • 2013
  • 본 논문에서는 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각 클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에서 나타낸다. 본 논문에서 제안하는 기법을 적용한 요부 초음파 영상과 일반적으로 자주 이용되는 히스토그램 기반 양자화 기법을 적용한 요부 초음파 영상을 비교하였을 때, 본 논문에서 제안하는 퍼지 C-Means 클러스터링을 이용한 양자화를 적용한 영상이 근육 내의 지방을 분석하는데 효과적인 것을 확인할 수 있었다.

  • PDF

Interior and Exterior Trimmed Means in an Exponential Model

  • Jungsoo Woo;Changsoo Lee;Joongdae Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제2권1호
    • /
    • pp.176-184
    • /
    • 1995
  • In an exponential distribution, the properties of the interior and exterior trimmed means will be introduced, and reliability estimators using the two trimmed means will be compared with the UMVUE of reliability function through simulations.

  • PDF

빅데이터 K-평균 클러스터링을 위한 RHadoop 플랫폼 (RHadoop platform for K-Means clustering of big data)

  • 신지은;오윤식;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.609-619
    • /
    • 2016
  • 본 논문에서는 대용량 데이터를 처리 및 분석하기 위해 RHadoop 플랫폼에서 실제 데이터와 모의 실험 데이터를 가지고 K-평균 클러스터링을 구현하고, MapReduce의 컴바이너 사용여부에 따른 처리 속도를 비교하고자 한다. 또한, K-평균 클러스터링에서 최적의 군집수 결정방법을 MapReduce 프로그램으로 구현하여 실제 데이터에 적용하고자 한다. 그리고 제안된 RHadoop 플랫폼의 확장 가능성을 보이기 위해 실제 데이터에서 R의 기본 패키지에서 kmeans() 함수와 bigmemory 패키지 상에서 유용한 bigkmeans() 함수와 처리 속도를 비교하고자 한다.

퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계 (Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1223-1229
    • /
    • 2009
  • The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

k-means 클러스터링을 이용한 CCTV의 효율적인 운영 설계 (Design of video surveillance system using k-means clustering)

  • 홍지훈;김승호;이근호
    • 사물인터넷융복합논문지
    • /
    • 제3권2호
    • /
    • pp.1-5
    • /
    • 2017
  • CCTV 기술이 발달하면서 여러 분야에서 사용하고 있다. 현제 CCTV 운영에 대해서 구체적으로 알아보고자 하며 또한 많은 분야에서 CCTV가 생기면서 운영에 대한 문제점이 생기고 있는데 문제점을 해결하기 위해 새로운 시스템을 설계하고자한다. 본 논문에서는 CCTV가 효율적으로 운영될 수 있도록 K-means을 이용하여 데이터 분석을 진행하고 영상기술도 증가시키고 효율적으로 운영이 가능하도록 기존 시스템에 새로운 기술을 및 기능을 추가하여 문제점을 해결하고 더 좋은 기술로 발전하고자 한다. 또한 관제센터에서 효율적으로 CCTV를 운영할 수 있도록 k-means를 이용하여 CCTV 기술에 새로운 시스템을 설계하여 문제점을 해결 효율적 관리를 위해 제안하고자 한다.