Fisher Linear Discriminant(FLD) is a sample and intuitive linear feature extraction method in pattern recognition. But in some special cases, such as un-separable case, one class data dispersed into several clustering case, FLD doesn't work well. In this paper, a new discriminant named K-means Fisher Linear Discriminant, which combines FLD with K-means clustering is proposed. It could deal with this case efficiently, not only possess FLD's global-view merit, but also K-means' local-view property. Finally, the simulation results also demonstrate its advantage against K-means and FLD individually.
본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.
Communications for Statistical Applications and Methods
/
v.12
no.2
/
pp.531-538
/
2005
In k-means clustering, we standardize variables before clustering and iterate two steps: units allocation by Euclidean sense and centroids updating. In applications to DB marketing where clusters are to be used as customer segments with similar consumption behaviors, we frequently acquire additional variables on the customers or the units through marketing campaigns a posteriori. Hence we need to modify the clusters originally formed after each campaign. The aim of this study is to propose a revision method of k-means clusters, incorporating added information by weighting clustering variables. We illustrate the proposed method in an empirical case.
Purpose: Hot strip rolling mill consists of a lot of mechanical and electrical units. In condition monitoring and diagnosis phase, various units could be failed with unknown reasons. In this study, we propose an effective method to detect early the units with abnormal status to minimize system downtime. Methods: The early warning problem with various units is defined. K-means and PAM algorithm with Euclidean and Manhattan distances were performed to detect the abnormal status. In addition, an performance of the proposed algorithm is investigated by field data analysis. Results: PAM with Manhattan distance(PAM_ManD) showed better results than K-means algorithm with Euclidean distance(K-means_ED). In addition, we could know from multivariate field data analysis that the system reliability of hot strip rolling mill can be increased by detecting early abnormal status. Conclusion: In this paper, clustering-based monitoring and fault detection algorithm using Manhattan distance is proposed. Experiments are performed to study the benefit of the PAM with Manhattan distance against the K-means with Euclidean distance.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.8
/
pp.731-738
/
2011
In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.
This study shows that the two-stage k-means clustering method can improve prediction performance by predicting the stock price, To this end, this study introduces the two-stage k-means clustering algorithm and tests the prediction performance through comparison with various machine learning techniques. It selects the cluster close to the prediction target obtained from the k-means clustering, and reapplies the k-means clustering method to the cluster to search for a cluster closer to the actual value. As a result, the predicted value of this method is shown to be closer to the actual stock price than the predicted values of other machine learning techniques. Furthermore, it shows a relatively stable predicted value despite the use of a relatively small cluster. Accordingly, this method can simultaneously improve the accuracy and stability of prediction, and it can be considered as the new clustering method useful for small data. In the future, developing the two-stage k-means clustering is required for the large-scale data application.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.491-493
/
2011
Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.143-146
/
2001
본 논문에서는 랜덤초기화 방법을 사용하여 초기 코드북을 생성하고, 이를 이용하여 초기 반복학습 시 수렴영역을 벗어난 2 이상의 가중치에 의한 K-means 알고리즘을 제안한다. 기존의 K-means 알고리즘이 국부적으로 최적화되고 초기 반복학습 시에 가중치의 영향이 크다는 점을 이용하여, 제안된 방법에서는 초기 반복학습 시의 가중치를 수렴영역에서 벗어난 큰 값으로 주고 이후 반복학습시의 가증치는 수렴영역 안에 있는 값으로 고정하여 코드북을 설계한다. 또한 초기 코드북을 얻기 위해 Splitting 방법과 같은 추가적인 과정 없이 랜덤한 방법에 의한 초기 코드북을 적용함으로써 제안된 알고리즘이 단순한 구조를 가지며, 구해진 코드북의 성능도 우수함을 확인할 수 있었다.
Communications for Statistical Applications and Methods
/
v.12
no.2
/
pp.497-508
/
2005
This paper aims at studying on K-means Clustering focusing on initialization which affect the clustering results in K-means cluster analysis. The four different methods(the MA method, the KA method, the Max-Min method and the Space Partition method) were compared and the clustering result shows that there were some differences among these methods, especially that the MA method sometimes leads to incorrect clustering due to the inappropriate initialization depending on the types of data and the Max-Min method is shown to be more effective than other methods especially when the data size is large.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.360-362
/
2019
본 논문에서는 k-Means 클러스터링을 활용한 컬러 기반 이미지 추출을 통한 색각 검사 방안 연구를 진행한다. 이를 위해, RGB 컬러스페이스 기반의 이미지를 특별한 컬러스페이스 이미지로 변환 후 컬러 패턴 분포에 따라 k-Means 클러스터링을 적용하여 다양한 형태의 이미지를 추출하는 실험을 수행한다. 위의 실험을 통해 하나의 이미지를 컬러 분포 패턴을 통해 클러스터링하여 이미지를 추출을 통하여 정상인과 색각 이상자를 판별할 수 있었다. 실험 결과, 다양한 형태와 색을 가진 이미지를 추출하여 정상인이 보는 이미지와 색각 이상자가 보는 이미지가 다른 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.