• Title/Summary/Keyword: K-Flood

Search Result 1,903, Processing Time 0.025 seconds

Improvement for Reservoir Operation Module of Flood Forecasting-Warning Systems in Han River (한강 홍수예경보시스템의 저수지 운영모듈 개선)

  • Kwon, Oh-Ig;Kim, Sung;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.685-695
    • /
    • 1999
  • On the premise of flood control procedure, flood forecasting-warning, system(FFWS) is one of actions for disaster prevention. It makes public announcements for flood situations timely in order to mitigate damage from floodings. Multi-purpose dam which has flood control storage plays an important role in river basin at flood time. In FFWS, it is reservoir operation module that is related to reservoir operation of multi-purpose dam. This study considers the current conditions and problems in reservoir operation module of FFWS in Han River and improves reservoir operation module under limited research scope. As results, additional reservoir operation modules such as Technical ROM(Reservoir Operation Method) and ARD(Approved Release Discharge) ROM were built in FFWS. Using these newly built reservoir operation modules. Han River Flood Control Office will plan and work for flood control and flood forecasting. Firstly, it may plan for flood control by Technical ROM which is deterministic simulation model, and work for final flood control and flood forecasting by ARD ROM according to approved release discharge afterward.

  • PDF

Pre-resilience Group Activities Against a Forthcoming Big Flood Disaster in Tokyo Below-Sea-Level Area

  • Ichiko, Taro;Kato, Takaarki;Ishikawa, Kinji
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.3-8
    • /
    • 2011
  • In April 2010, Japan Cabinet Office has published the first countermeasure report for severe flood disasters. This report showed various flood-disaster scenarios and factors that widened damages. One of important suggestions was to transmit precious information for long-distance evacuation. So far, local municipalities have made Flood Hazard Map to inform resident risk and evacuation. In this paper, cognition and effectiveness of a flood hazard map in the down ARAKAWA river Tokyo were measured by social questionnaire survey. In conclusion, there were 3 factors to effect validity of a flood hazard map. There were (1) commitment to their neighborhood organization, (2) experience of Kathleen typhoon in 1947 and (3) level of using targeted river. As results, a logical diagram about a flood hazard map perception was drawn and discussed from a view of community-based approach.

  • PDF

Estimation of the Flash Flood Severity using Runoff hydrograph and Flash flood index (유출수문곡선과 돌발홍수지수를 이용한 돌발홍수심도 산정)

  • Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.185-196
    • /
    • 2008
  • The flash flood has been studied in the climatological aspect which considers temporal and spatial characteristics of rainfall. However, we have not interested in runoff hydrograph for flash flood study. Therefore, our objectives of this study are to apply a work of Bhaskar et. al (2000) which studied runoff hydrograph to represent the flash flood to Korea and also to distinguish flash flood event from general flood event. That is, we quantified the severity of flash flood by estimation of flash flood index using runoff hydrograph. This study estimated the flash flood index for investigating the relative severity of flash flood in Han river basin with 101 flood events. Also we quantified the flash flood severity for flood event by heavy rainfall occurred in July of 2006. As a result, Kangwon-do province showed more severe flash flood than other areas in Han river basin and urban area such as Jungrang cheon stream also showed severe flash flood. We analyzed a flash flood of July of 2006 by dividing July into 1st to 3rd terms. From the analysis we knew that the 1st term of July showed the severe flash flood was occurred in Seoul area and the 2nd term showed it was occurred in Kangwon-do province.

Flood-Flow Managenent System Model of River Basin (하천유역의 홍수관리 시스템 모델)

  • Lee, Soon-Tak
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.117-125
    • /
    • 1993
  • A flood -flow management system model of river basin has been developed in this study. The system model consists of the observation and telemetering system, the rainfall forecasting and data-bank system, the flood runoff simulation system, the dam operation simulation system, the flood forecasting simulation system and the flood warning system. The Multivariate model(MV) and Meterological-factor regression model(FR) for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood-flow management. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, streamflow and other hydrological data during the past flood periods. The flood-flow management system model with SSARR model(FFMM-SR,FFMM-SR(FR) and FFMM-SR(MV)), in which the integrated operation of dams and rainfall forecasting in the basin are considered, is then suggested and applied for flood-flow management and forecasting. The results of the simulations done at the base stations are analysed and were found to be more accurate and effective in the FFMM-SR and FFMM0-SR(MV).

  • PDF

Study of a Process for Flood Detention Location and Storage Capacity (재해저류지 위치결정과 용량결정 과정에 관한 연구)

  • Oh, Gun-Heung;Park, Ki-Bum;Chang, In-Soo
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.601-609
    • /
    • 2008
  • In this study for the development of area due to the increasing of industry, population and spreading of urbanization is rapidly increasing but about seventy percent of our nation's areas consists of the mountainous districts. In such case, when those areas have the heavy rains break, they are washed away by a fast-flowing stream of a valley and overflowed. Thus it could result on human life and property damage and also the widespread of flood damage in the downstream area. To decrease those damage, the construction of flood control reservoir is necessary. This research was aim to construct the flood runoff models of a mountainous small district and to determine the probability rainfall by analyzing precipitation. The study also examined the effects of location and size of flood control reservoir on flood reduction. The result showed that the construction of detention basin was an effective way to ensure the safety of flood control and multiple detention basin had superior result for reducing amount of runoff in the down stream area than the single detention basin.

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

Analysis of the Applicability of Flood Risk Indices According to Flood Damage Types (홍수피해유형별 홍수 위험 지수 적용성 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, the applicabilities of flood risk indices using FVI from IPCC, PSR method from OECD, and DPSIR method from EEA, were analyzed. Normalized values of daily maximum rainfall, hourly maximum rainfall, ten minute maximum rainfall, annual precipitation, total days of heavy rainfall (more than 80mm/day), density of population, density of asset, DEM, road statistics, river maintenance ratio, reservoir capacity, supply ratio of water supply and sewerage, and pumping capacity were constructed from 2000 to 2015 for nationwide 113 watersheds, to estimate flood risk indices. The estimated indices were compared to 4 different types of flood damage such as the number of casualties, damage area, the amount of flood damage, and flood frequency. The relationships between flood indices and different flood damage types demonstrated that the flood index using the PSR method shows better results for the amount of flood damage, the number of casualties and damage area, and the flood index using the DPSIR method shows better results for flood frequency.

Reservoir Operation at Flood Time by Transformed Reservoir Flood(TRF) Reservoir Operation Method(ROM) (저수지 홍수변환법에 의한 홍수시 저수지 운영)

  • Gwon, O-Ik;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.105-113
    • /
    • 1998
  • Reservoir operation during flood period can be divided into two parts: One is for an operating policy during flood period to consider water conservation and flood control, and the other is for flood time on a random water level at flood forecasting, This study is concerned with reservoir operation and discusses general reservoir operation at flood time. Flood control has problems such as the uncertainty of hydrologic models. technical limitations and some constraints. Therefore, we may prepare the quantitative flood control methods based on the assured flood control storage for reservoir operation. Transformed Reservoir Flood(TRF) Reservoir Operation Method(ROM) is a procedure which determines the adequate releases with considering dam safety for flood inflows over non-damaging discharge. Based on the TRF ROM which was explained in our published paper. the study discusses the TRF ROM with additional investigations and the general reservoir operation rules at flood time.

  • PDF

Study on Estimation and Application of the Fwl-D-F curves for Urban Basins (도시유역의 Fwl-D-F 곡선 산정 및 활용에 관한 연구)

  • Choi, Hyun-Il;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2687-2692
    • /
    • 2010
  • There have been performed many researched for flood magnitude analysis, for example, the Flood-Duration-Frequency relations in the west. Because flood water stage data are more available rather than flood amount data at flood gauge stations of Korea, this study developed Flood water level-Duration-Frequency (Fwl-D-F) curves using rainfall Intensity-Duration-Frequency(I-D-F) curves for the quantitative flood risk assessment in urban watersheds. Fwl-D-F curve is made from water level data for 18 years at Joongrayng bridge station of Joongrayng River basin in Han River drainage area. Fwl-D-F curve can estimate the occurrence frequency for a certain flood elevation, which can be used for urban flood forecasting. It is expected that the flood elevation can be estimated from the forecasted rainfall data using both Fwl-D-F and I-D-F curves.

Determination Scheme of Variable Restricted Water Level during Flood Period of Multipurpose Dam (다목적 댐의 홍수기중 가변제한수위 결정 방안)

  • Gwon, O-Ik;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.709-720
    • /
    • 1997
  • When flood control storage lacks for the reservoir operation of multipurpose dams during flood period, the additional flood control storage should be considered for the flexible use of limited storage capacity. Flood period is divided by meteorological characteristics in this study and the water levels for water demand and flood control are investigated for the divided flood period. Based on the investigations, we suggest the variable restricted water level(VRWL) from the considerations of water conservation and flood control which can determine dam operating water level during flood period. This paper presents an application of the methodology to determination of the VRWL during flood period at the Taechong Dam and the results are discussed.

  • PDF