• Title/Summary/Keyword: K-Flood

Search Result 1,901, Processing Time 0.029 seconds

A Forecasting Model for the Flood Peak Stage and Flood Travel Time by Hydraulic Flood Routing

  • Yoon, Yong-Nam;Park, Moo-Jong
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.11-19
    • /
    • 1993
  • The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole large reservoir system in the Han River, Korea. The computed flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by a rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood travel time, release rate and duration from the upper dam.

  • PDF

Assessment of Potential Flood Damage Considering Regional Flood Damage Cycle (지역별 홍수피해주기를 고려한 홍수위험잠재능 평가)

  • Kim, Soo-jin;Bae, Seung-jong;Kim, Seong-pil;Bae, Yeon-Joung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.143-151
    • /
    • 2015
  • Recently, flood has been increased due to climate change resulting in numerous damages for humans and properties. The main objective of this study was to suggest a methodology to estimate the flood vulnerability using Potential Flood Damage (PFD) concept. To evaluate the PFD at a spatial resolutions of city/county units, the 19 representative evaluation indexing factors were carefully selected for the three categories such as damage target ($F_{DT}$), damage potential ($F_{DP}$) and prevention ability ($F_{PA}$). The three flood vulnerability indices of $F_{DT}$, $F_{DP}$ and $F_{PA}$ were applied for the 162 cities and counties in Korea for the pattern classification of potential flood damage. It is expected that the supposed PFD can be utilized as the useful flood vulnerability index for more rational and practical protection plans against flood damage.

A Study on Potential Flood Damage Classification and characteristic analysis (시군별 홍수위험잠재능 유형화 및 특성분석)

  • Kim, Soo-Jin;Eun, Sang-Kyu;Kim, Seong-Pil;Bae, Seung-Jong
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.3
    • /
    • pp.21-36
    • /
    • 2017
  • Climate change is intensifying storms and floods around the world. Where nature has been destroyed by development, communities are at risk from these intensified climate patterns. This study was to suggest a methodology for estimating flood vulnerability using Potential Flood Damage(PFD) concept and classify city/county about Potential Flood Damage(PFD) using various typology techniques. To evaluate the PFD at a spatial resolutions of city/county units, the 20 representative evaluation indexing factors were carefully selected for the three categories such as damage target(FDT), damage potential(FDP) and prevention ability(FPA). The three flood vulnerability indices of FDT, FDP and FPA were applied for the 167 cities and counties in Korea for the pattern classification of potential flood damage. Potential Flood Damage(PFD) was classified by using grouping analysis, decision tree analysis, and cluster analysis, and characteristics of each type were analyzed. It is expected that the suggested PFD can be utilized as the useful flood vulnerability index for more rational and practical risk management plans against flood damage.

The Analysis of Flood Propagation Characteristics using Recursive Call Algorithm (재귀호출 알고리듬 기반의 홍수전파 특성 분석)

  • Lee, Geun Sang;Jang, Young Wun;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.63-72
    • /
    • 2013
  • This paper analyzed the flood propagation characteristics of each flood elevation due to failure of embankment in Muju Namdae Stream using recursive call algorithm. A flood propagation order by the flood elevation was estimated by setting destruction point at Beonggu and Chasan small dam through recursive call algorithm and then, the number of grids of each flood propagation order and accumulated inundation area were calculated. Based on the flood propagation order and the grid size of DEM, flood propagation time could be predicted each flood elevation. As a result, the study could identify the process of flood propagation through distribution characteristic of the flood propagation order obtained from recursive call algorithm, and could provide basic data for protection from flood disaster by selecting the flood vulnerable area through the gradient pattern of the graph for accumulated inundation area each flood propagation order. In addition, the prediction of the flood propagation time for each flood water level using this algorithm helped provide valuable information to calculate the evacuation path and time during the flood season by predicting the flood propagation time of each flood water level.

Development of 2D inundation model based on adaptive cut cell mesh (K-Flood) (적응적 분할격자 기반 2차원 침수해석모형 K-Flood의 개발)

  • An, Hyunuk;Jeong, Anchul;Kim, Yeonsu;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.853-862
    • /
    • 2018
  • An adaptive cut-cell grid based 2D inundation analysis model, K-Flood, is developed in this study. Cut cell grid method divides a grid into a flow area and a non-flow area depending the characteristics of the flows. With adaptive mesh refinement technique cut cell method can represent complex flow area using relatively small number of cells. In recent years, the urban inundation modeling using high resolution and fine quality data is increasing to achieve more accurate flood analysis or flood forecasting. K-Flood has potential to simulate such complex urban inundation using efficient grid generation technique. A finite volume numerical scheme of second order accuracy for space and time was applied. For verification of K-Flood, 1) shockwave reflex simulation by circular cylinder, 2) urban flood experiment simulation, 3) Malpasset dam collapse simulation are performed and the results are compared with observed data and previous simulation results.

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

Monitoring Flood Disaster Using Remote Sensing Data

  • Chengcai, Zhang;Xiuwan, Chen;Gaolong, Zhu;Wenjiang, Zhang;Peng, Sun-Chun
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.280.2-286
    • /
    • 1998
  • Flood is the main natural disaster mostly in the world. It is a care problem to prevent flood disaster generally. The frequency of flood disaster is high and the distributing field is wide, the 50 percent population and 70 percent properties distribute at the threaten field of flood disaster in China. Flood disaster has caused a huge amount of economical losses and these losses have an increasing trend. Along with the development of reducing natural disaster action, it has become one of the most attentive problems for monitoring flood, preventing flood and forecasting flood efficiently. Remote sensing has the characteristics of large spatial observing areas, wide spectrum ranges, and imaging far away from the targets, imaging capabilities all weather. Spatial remote sensing information, which records the full, processes of the disaster's occurrence and development in real-time. It is a scientific basis for management, planning and decision-making. Through systemic analyzing the RS monitoring theory, based on compounding RS information, the technology and method of monitoring flood disaster are studied.

  • PDF

Evaluating Flood Risk Area using GIS and RADARSAT Data-A Case Study in Northeast Thailand

  • Mongkolsawat, C.;Thirangoon, P.;Suwanwerakamtorn, R.;Karladee, N.;Paiboonsak, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.7-9
    • /
    • 2003
  • The objective of this study is to evaluate flood risk area by integrating GIS and RADARSAT data. The study area, Northeast Thailand, is subject to flood during the rainy season. The main data used in this evaluation included RADARSAT data, landform and topographic map. The evaluation was conducted by overlay operation of flood area in 2001, land form and buffer region beyond the flood areas with the selection criteria defined. Most of the flood risk areas were found in the low lying land form within the buffer region. The cloud penetrating capabilities of SAR is only a source of information for effectively assessment of flood risk area in Northeast Thailand.

  • PDF

Flood Simulation of Upriver District Considering an Influence of Backwater

  • Um, Dae Yong;Song, Yong Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.631-642
    • /
    • 2012
  • This study aims to predict inundation and flood-stricken areas more accurately by simulating flood damage caused by reversible flow of rain water in the upper water system through precise 3D terrain model and backwater output. For the upstream of the South Han-River, precise 3D terrain model was established by using aerial LiDAR data and backwater by area was output by applying the storm events of 2002 including the history of flood damage. The 3D flood simulation was also performed by using GIS Tool and for occurrence of related rainfall events, inundation events of the upriver region of water system was analyzed. In addition, the results of flood simulation using backwater were verified by making the inundation damage map for the relevant area and comparing it with flood simulation's results. When comparing with the results of the flood simulation applying uniformly the gauging station's water surface elevation used for the existing flood simulation, it is found that the results of the flood simulation using backwater are close to the actual inundation damage status. Accordingly, the causes of flood occurred in downstream of water system and upstream that has different topographic characteristics could be investigated and applying the simulation with backwater is proved more proper in order to procure accuracy of the flood simulation for the upriver region.

Wetland Construction: Flood Control and Water Balance Analysis

  • Kim, Duck-Gil;Kwak, Jae-Won;Kim, Soo-Jun;Kim, Hung-Soo;Ahn, Tae-Jin;Singh, Vijay P.
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.197-205
    • /
    • 2010
  • Recent years have witnessed increasing interest in wetland constructions in Korea as a flood control measure during the flood season and for consideration of the ecology during the non-flood season. In this study, hydraulic and hydrologic analyses were performed on a wetland construction plan for use as an alternative sustainable flood defense during the flood season, as well as a wetland that can protect the ecosystem during the non-flood season. The study area was the basin of the Topyeong-cheon stream, which is a tributary of the Nakdong River, including the Upo wetland, which is registered in the Ramsar Convention and the largest inland wetland in Korea. Wetlands were to be constructed at upstream and downstream of the Upo wetland by considering and analyzing seven scenarios for their constructions to investigate the effect of flood control during the flood season; it was found the best scenario reduced the flood level by 0.56 m. To evaluate the usefulness of the constructed wetlands during the non flood season, the water balance in the wetlands was analyzed, with the best scenario found to maintain a minimum water level of 1.3 m throughout the year. Therefore, the constructed wetlands could provide an alternative measure for flood prevention as well as an ecosystem for biodiversity.