• Title/Summary/Keyword: K-평균 군집

Search Result 652, Processing Time 0.033 seconds

Optimal Arrangement of Patrol Ships based on k-Means Clustering for Quick Response of Marine Accidents (해양사고 신속대응을 위한 k-평균 군집화 기반 경비함정 최적배치)

  • Yoo, Sang-Lok;Jung, Cho-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.775-782
    • /
    • 2017
  • The position of existing patrol ships has been decided according to subjective judgments, not purely by any reasonable or scientific criteria, because of a lack of access to marine accident positions. In this study, the optimal location of patrol ships is quantitatively determined based on historical marine accident data. The study area used included the coastal sea of Pohang in South Korea. In this study, a k-means clustering algorithm was used to derive the location of patrol ships, and then a Voronoi diagram was used to divide the region around each patrol ship. As a result, the average navigation distance for patrol ships was improved by 4.4 nautical miles, and the average arrival time was improved by 13.2 minutes per marine accident. Moreover, if the locations of patrol ships need to be changed flexibly, it will be possible to optimally arrange limited resources using the technique developed in this study to ensure a fast rescue.

Comparison of clustering methods of microarray gene expression data (마이크로어레이 유전자 발현 자료에 대한 군집 방법 비교)

  • Lim, Jin-Soo;Lim, Dong-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Cluster analysis has proven to be a useful tool for investigating the association structure among genes and samples in a microarray data set. We applied several cluster validation measures to evaluate the performance of clustering algorithms for analyzing microarray gene expression data, including hierarchical clustering, K-means, PAM, SOM and model-based clustering. The available validation measures fall into the three general categories of internal, stability and biological. The performance of clustering algorithms is evaluated using simulated and SRBCT microarray data. Our results from simulated data show that nearly every methods have good results with same result as the number of classes in the original data. For the SRBCT data the best choice for the number of clusters is less clear than the simulated data. It appeared that PAM, SOM, model-based method showed similar results to simulated data under Silhouette with of internal measure as well as PAM and model-based method under biological measure, while model-based clustering has the best value of stability measure.

Evaluation Of Improved Usage Profiles Using Frequency Support Threshold In Clusters (클러스터 내부 빈발 지지도를 이용한 개선된 사용 프로파일 평가)

  • 안계순;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.277-279
    • /
    • 2002
  • 웹 로그 기반의 웹 사용 마이닝은 명시적 평가 의존, 확장성 결여, 그리고 다차원 및 희박한 데이터에 성능이 떨어지는 협력적 여과의 문제를 다소 해결할 수 있다. 그러나 k-Means 군집화 방법으로 생성된 군집속 유사 사용자 이동 패턴으로는 클러스터속 사용자 전체의 선호도를 표현할 수 없으므로 사용자 이동 패턴인 트랜잭션들로부터 사용 프로파일을 유도해야 한다. 본 논문에서는 유사 군집 사용자들의 관심과 기호를 표현할 수 있도록 클러스터 내부 데이타로부터 평균 가중치 및 빈발 지지도 임계값을 사용하여 개선된 사용 프로파일을 생성하고 실험 데이터를 통한 예측력과 추천에 대한 성능을 평가한다.

  • PDF

A Comparison of cluster analysis based on profile of LPGA player profile in 2009 (2009년 여자프로골프선수 프로파일을 이용한 군집방법비교)

  • Min, Dae-Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.471-480
    • /
    • 2010
  • Cluster analysis is one of the useful methods to find out number of groups and member’s belongings. With the rapid development of computer application in statistics, variety of new methods in clustering analysis were studied such as EM algorism and Self organization maps. The goals of cluster analysis is finding the number of groupings that are meaningful to me. If data are analyzed perfectly with cluster analysis, we can get the same results from discernment analysis.

Change for 13 Years(1983~1996) and Plant Community Structure of Forest Area around Youcheon Industrial Complex (여천공단 주변 산림지역 식물군집구조와 13년간의 변화(1983~1996년))

  • 한봉호;최송현;박인협
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.212-223
    • /
    • 1998
  • The purpose of this study was to investigate the plant community structure and identify the change for 13 years(1983~1996) of forest around Youcheon industrial complex, Korea. 27 plots(300$m^2$/1plot) were established in forest around Youcheon industrial complex. By DCA ordination technique, the 27 plots were classified into five communities, which were Pinus thunbergii community, Pinus thunbergii-Quercus spp. community, P. thunbergii-Eurya japonica community, P. densiflora-P. thunbergii community and P. densiflora community. It seemed that P. thunbergii-Quercus app. community and P. densiflora-P. thunbergii community succeeded to Quercus spp. community and it seemed that P. thunbergii community, P. thunbergii-E. japonica community and P. densiflora community would not be replace by another woody species. Soil pH was pH 4.38~4.61, there were bad soil for organic matters content and exchangeable cations(C $a^{++}$, $Mg^{++}$, $K^{+}$) content. Shannon's diversity, H' max and number of species were improved for 13 years. So did soil characteristics.s.s.s.

  • PDF

인위적 데이터를 이용한 군집분석 프로그램간의 비교에 대한 연구

  • 김성호;백승익
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2001
  • Over the years, cluster analysis has become a popular tool for marketing and segmentation researchers. There are various methods for cluster analysis. Among them, K-means partitioning cluster analysis is the most popular segmentation method. However, because the cluster analysis is very sensitive to the initial configurations of the data set at hand, it becomes an important issue to select an appropriate starting configuration that is comparable with the clustering of the whole data so as to improve the reliability of the clustering results. Many programs for K-mean cluster analysis employ various methods to choose the initial seeds and compute the centroids of clusters. In this paper, we suggest a methodology to evaluate various clustering programs. Furthermore, to explore the usability of the methodology, we evaluate four clustering programs by using the methodology.

  • PDF

Analysis of Apartment Power Consumption and Forecast of Power Consumption Based on Deep Learning (공동주택 전력 소비 데이터 분석 및 딥러닝을 사용한 전력 소비 예측)

  • Yoo, Namjo;Lee, Eunae;Chung, Beom Jin;Kim, Dong Sik
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1373-1380
    • /
    • 2019
  • In order to increase energy efficiency, developments of the advanced metering infrastructure (AMI) in the smart grid technology have recently been actively conducted. An essential part of AMI is analyzing power consumption and forecasting consumption patterns. In this paper, we analyze the power consumption and summarized the data errors. Monthly power consumption patterns are also analyzed using the k-means clustering algorithm. Forecasting the consumption pattern by each household is difficult. Therefore, we first classify the data into 100 clusters and then predict the average of the next day as the daily average of the clusters based on the deep neural network. Using practically collected AMI data, we analyzed the data errors and could successfully conducted power forecasting based on a clustering technique.

Study on Scaling Exponent for Classification of Regions using Scaling Property (스케일 성질을 이용한 군집 지역에서의 스케일 인자에 대한 연구)

  • Jung, Younghun;Kim, Sunghun;Ahn, Hyunjun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.504-504
    • /
    • 2015
  • 수공구조물을 설계하기 위해서는 설계수문량을 빈도해석을 통해 산정할 수 있다. 빈도해석 중 지점빈도해석을 보완한 지역빈도해석을 적용하기 위해서는 군집분석을 통한 지역구분이 무엇보다 중요하다. 또한 스케일 성질(scaling property)은 강우의 시 공간적 특성을 지속기간별 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 강우의 IDF곡선을 제시할 수 있는 방법이다. 따라서 스케일 성질을 통해 군집된 지역에서의 강우자료에 적용하여 스케일 인자(scaling exponent)를 추정한 후 수문학적 동질성을 통계적 특성으로 설명하고자 한다. 본 연구를 수행하기에 앞서 군집 분석은 4개의 군집방법(평균연결법, Ward방법, Two-Step방법, K-means방법)을 적용하였고, 한강유역에 위치한 104개의 강우지점은 4개의 지역으로 구분하는 것이 적절하다고 판단되어 비계층적 방법인 k-means방법을 이용하여 지역을 구분하였다. 본 연구에서는 군집된 결과를 바탕으로 4개의 지역으로 구분된 지역에 포함된 강우지점을 대상으로 스케일 인자를 추정하고 수문학적 동질성을 통계적 방법으로 제시하고자 한다.

  • PDF

A Study on the Impacts of Truck Platooning on Freeway Traffic-Flow and the Effect of Dedicated Lane (고속도로 화물차의 군집주행이 교통류에 미치는 영향 및 전용차로 효과 연구)

  • KIM, Joohye;Lee, YoungIhn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.52-69
    • /
    • 2020
  • Considering the need for an infrastructure-level review, this study analyzed the impact of truck platooning on freeway traffic flow and the effect of dedicated lanes based on domestic road and traffic conditions. According to the study, the higher traffic volume and truck ratio, the higher ratio of platoons and the greater size of platoons are formed, which results in greater effect of increasing the average speed of the network. Therefore, the routes with heavy traffic and heavy cargo traffic could be positively considered for truck platooning. However, the analysis showed that the effect of increasing the average speed of the entire network is difficult to expect in the event of a queue due to entry and exit, and that the overall network's throughput could be reduced. Therefore, traffic operation strategies associated with the access road, such as securing capacity of the connection, are needed to maximize the effect of truck platooning. When it comes to the effect of dedicated lane, it could have a positive effect only if one lane was fully operated by automated trucks under the condition of 100% MPR, which allowed positive effects in all aspects, such as higher average speed, throughput, and reduced conflict rates.

Clustering analysis of Korea's meteorological data (우리나라 기상자료에 대한 군집분석)

  • Yeo, In-Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.941-949
    • /
    • 2011
  • In this paper, 72 weather stations in Korea are clustered by the hierarchical agglomerative procedure based on the average linkage method. We compare our clusters and stations divided by mountain chains which are applied to study on the impact analysis of foodborne disease outbreak due to climate change.