• Title/Summary/Keyword: K-변질작용

Search Result 167, Processing Time 0.026 seconds

Formation of Alteration Minerals in Gouges of Quaternary Faults at the Eastern Blocks of the Ulsan Fault, Southeastern Korea (울산단층 동부지역 제4기단층 비지대내 변질광물의 형성)

  • Chang, Tae-Woo;Chae, Yeon-Joon;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.205-214
    • /
    • 2005
  • Some Quaternary faults developed in the eastern block of the Ulsan fault are Gaegok 1, Gaegok 2, Singye, Madong, Wonwonsa and Jinhyeon faults, which are characterized by thin gouge and narrow cataclasitic tones. This study was performed to emphasize the role of mineral alteration and microtexture in response to hydrothermal alteration of fault gouges during fault activity, using XRD, EPMA, BSE (backscattered electron image), and K-Ar age dating methods. Alteration minerals in fault gouges were formed in the age range of $44.3\~28.9Ma$ by hydrothermal alteration attributed to fault activity. XRD results show that fault gouges consist predominantly of clay minerals, quartz and feldspars. Clay minerals formed in the gouge zones are mainly composed of smectite with trace chlorite, illite and kaolinite. The evidence to support the hydrothermal alteration of preexisting minerals due to fault activity are easily recognized at the host rocks in contact with gouges zones. Injected gouge and calcite veins indicate that they were originated from multiple deformation by repeated fault activity. Gouge with green or greenish grey color, for example Jinhyeon fault, contains higher $Al_2O_3$ and lower MgO and CaO compared to those with reddish color. Various colors of fault gouge are intimately related to the chemical compositions of main constituent mineral as well as mineral assemblage.

Glass Inclusions in Quartz Phenocrysts of Tuff from Sunshin Au Mining Area, Haenam, Jeonnam. (전남 해남의 순신 금광산 지역에 산출하는 응회질암에 포획된 유리포유물)

  • Lee, Seung-Yeol;Yang, Kyoung-Hee;Jeon, Byung-Geun;Bak, Gil;Koh, Sang-Mo;Seo, Jeong-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.337-348
    • /
    • 2009
  • Clear and homogeneous glass inclusions are well preserved at the rim of the quartz phenocrysts of tuff from Sunshin epithermal Au deposit, Haenam, although the host rocks experienced extensive silicification and argillic alteration. Glass inclusion vary in size from $5\;{\mu}m$ to larger than $200\;{\mu}m$ consisting of glass(60~80 vol%) + vapor bubble(15~30 vol%) $\pm$ daughter crystals(<10 vol%). Most of glass inclusions are cubic to rectangular in shape, indicating that the host quartz grew in the stability field of $\beta$-quartz. All the glass inclusions appear to be primary. Glass inclusions are composed of highly evolved high-K calc-alkaline rhyolites, which can represent the final liquidus phase of the magma system. The $Au_2O_3$ concentration (<0.30 wt%) is trivial in the glass, indicating there was no enrichment in the final residual melt. Textural characteristics suggest that magma was water-saturated shortly before or during the eruption. $H_2O$ content of the glass (ca. 2-4 wt%) suggests a water saturation pressure($P_{H2O}$) of about 300-900 bars. This pressure implies a minimum depth of 0.8-2.5 km for the magma chamber.

Occurrence and Mineralogy of Sericite Deposit in the Hongjesa Granite from the Bonghwa Area in Kyungsangbuk-do, Korea (경북 봉화지역 홍제사 화강암 내에 배태하는 견운모광상의 산상 및 구성광물)

  • Oh, Ji-Ho;Hwang, Jin-Yeon;Koh, Sang-Mo;Kwack, Kyu-Won;Lee, Hyo-Min;Chi, Se-Jung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.67-83
    • /
    • 2008
  • The sericite ore deposits formed in the Precambrian granitic rock at the Bonghwa area, Kyungsangbuk-do, South Korea. The geochemical and mineralogical characteristics of sericite occurred in Daehyun and Seonghwang mine were analyzed using petrographic microscope, XRD, EPMA, XRF and ICP. An alteration mechanism was also studied. Sericitization occurred within the granitic rock by hydrothermal alteration. From the careful study on the occurrence and mineral assemblage, four alteration zone were clearly identified. These zones reflect progressive hydrothermal alteration process. All sericites belong to $2M_1$ polytype and their mineralogical and geochemical properties are close to illite. The sericite ores show various colors, but the characteristics of major element compositions and crystal structures are not different. The trace element analysis, however, indicates that the difference in color attribute to the abundance of Cr and Ti: bluish green colored sericite are enriched in Cr and blackish green colored sericite enriched in Ti. The formation of sericite ore deposit in the granitic rocks are closely relate to fracture system such as fault and joint. It is considered that the sericite ore deposits in this area were formed by very simple hydrothermal alteration occurred along the fracture zones in granitic rocks with absence of other hydrothermally altered minerals such as kaolin and pyrophyllite.

Alteration and Mineralization in the Xiaoxinancha Porphyry Copper Deposit, Yianbin, China: Fluid Inclusion and Sulfur Isotope Study (중국 연변 쇼시난차 반암동 광상의 광화작용 및 변질작용: 유체포유물 및 황동위원소 연구)

  • Seong-Taek Yun;Chil-Sup So;Bai-Lu Jin;Chul-Ho Heo;Seung-Jun Youm
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • The Xiaoxinancha Cu-Au deposit in the Jilin province, located in NNE 800 km of Beijing, is hosted by diorite. The ore mineralization of Xiaoxinancha Cu-Au deposit show a stockwork occurrence that is concentrated on the potassic and phyllic alteration zones. The Xiaoxinancha Cu-Au deposit in the south is being mined with its reserves grading 0.8% Cu, 3.64 g/t Au and 16.8 g/t Ag and in the north, grading 0.63% Cu, 3.80 g/t Au and 6.8 glt Ag. The alteration assemblage occurs as a supergene blanket over deposit. Hydrothermal alteration at the Xiaoxinancha Cu-Au deposit is centered about the stock and was extensively related to the emplacement of the stock. Early hydrothermal alteration was dominantly potassic and followed by propylitic alteration. Chalcocite, often associated with hematite, account for the ore-grade copper, while chalcopyrite, bornite, quartz, epidote, chlorite and calcite constitute the typical gangue assemblage. Other minor opaque phases include pyrite, marcasite, native gold, electrum, hessite, hedleyite, volynskite, galenobismutite, covellite and goethite. Fluid inclusion data indicate that the formation of this porphyry copper deposit is thought to be a result of cooling followed by mixing with dilute and cooler meteoric water with time. In stage II vein, early boiling occurred at 497$^{\circ}$C was succeeded by the occurrence of halite-bearing type III fluid inclusion with homogenization temperature as much as 100$^{\circ}$C lower. The salinities of type 1II fluid inclusion in stage II vein are 54.3 to 66.9 wt.% NaCI + KCI equiv. at 383$^{\circ}$ to 495$^{\circ}$C, indicating the formation depth less than 1 km. Type I cupriferous fluids in stage III vein have the homogenization temperatures and salinity of 168$^{\circ}$ to 365$^{\circ}$C and 1.1 to 9.0 wt.% NaCI equiv. These fluid inclusions in stage III veins were trapped in quartz veins containing highly fractured breccia, indicating the predominance of boiling evidence. This corresponds to hydrostatic pressure of 50 to 80 bars. The $\delta$$^{34}S$ value of sulfide minerals increase slightly with paragenetic time and yield calculated $\delta$$^{34}S_{H2S}$ values of 0.8 to 3.7$\textperthousand$. There is no mineralogical evidence that fugacity of oxygen decreased, and it is thought that the oxygen fugacity of the mineralizing fluids have been buffered through reaction with magnetite. We interpreted the range of the calculated $\delta$$^{34}S_{H2S}$ values for sulfides to represent the incorporation of sulfur from two sources into the Xiaoxinancha Cu-Au hydrothermal fluids: (1) an isotopically light source with a $\delta$$^{34}S$ value of I to 2$\textperthousand$, probably a Mesozoic granitoid related to the ore mineralization. We can infer from the fact that diorite as the host rock in the Xiaoxinancha Cu-Au deposit area intruded plagiogranite; (2) an isotopically heavier source with a $\delta$$^{34}S$ value of > 4.0$\textperthousand$, probably the local porphyry.

Mineraloty and Genesis of the Sericite Ore from the Samsung Mine Area (삼성광산 일대의 견운모광화작용에 대한 광물학적 및 성인적 연구)

  • Kim Won-Sa;Choi Jun-Kyu
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.674-682
    • /
    • 2005
  • The Samsung mine is located in Jeongsan-myeon, Cheongyang-gun, Chungcheongnam-do, and is produces sericite ores. The purpose of this study is to investigate the geology and mineralogy of sericite one and its host-rock together with the alteration processes and age of sericitization. Geological survey, polarizing microscopy, X-ray powder diffraction, electron microprobe analysis, X-ray fluorescent analysis, differential thermal analysis, and K/Ar isotope study have been employed for this study. The mine area is composed of Precambrian granite-gneiss and mica schist, and also Jurassic biotite granite. Serictization has occured within the granite-gneiss, and is interpreted to be formed by hydrothermal alteration. The sericite was formed by the breakdown of orthoclase, plagioclase, and biotite, respectively. With sericitization intensity increase, $SiO_2\;and\;Na_2O$ contents are decreased, while $Al_2O_3\;and\;K_2O$ increased. The formation age of sericite has been determined to be Jurassic, which corresponds well to the intrusion age of the biotite granite nearby.

Hydrothermal Alteration of Miryang Pyrophyllite Deposit (밀양납석광상의 열수변질 특징)

  • Moon, Dong Hyeok;Kwak, Kyeong Yoon;Lee, Bu Yeong;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.265-277
    • /
    • 2015
  • Hydrothermal alteration patterns and environment are studied by mineral assemblages and chemical analyses of surface and core samples from Miryang pyrophyllite deposit. The alteration zones of this deposit can be divided into three zones on the basis of mineral assemblage; advanced argillic, phyllic, and propylitic zone. Advanced argillic zone mainly consists of pyrophyllite-dickite (-quartz) and corresponds to principal mining ore. The common mineral assemblage of phyllic zone and propylitic zone are sericite-quartz-dickite and chlorite-quartz, respectively. Horizontal and vertical alteration patterns and major element geochemistry indicate that pyrophyllite ores have been formed several times by hydrothermal alteration. And it also suggests that the huge ore bodies may be extended from the deeper part of recent quarries to the south-southeastern direction. The paragenesis of ore minerals and polytype (2M) suggest that ore deposit was formed at about $300-350^{\circ}C$.

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

Alteration Zoning, Mineral Assemblage and Geochemistry of the Hydrothermal Clay Deposits Related to Cretaceous Felsic Magmatism in the Haenam Area, Southwest Korea (한국 서남부, 해남지역에서 백악기 산성마그마티즘에 관련된 열수점토광상의 누대분배, 광물조합의 지구화학적 연구)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.397-416
    • /
    • 1992
  • In the present study, three clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were investigated. The altered zones are recognized in the hydrothermally altered rocks of the clay deposits from the center of the alteration to the margin: Kaolin, Kaolin-Quartz, Quartz, Sericite and Chlorite zones in the Seongsan deposits; Quartz zone, Alunite zone, Kaolin zone, Sericite zone and Chlorite zone in the Ogmaesan deposits; Quartz zone, Pyrophyllite zone, Sericite zone and Chlorite zone in the Haenam deposits. These zones can be grouped into two types of alteration: Acidic alteration such as Pyrophyllite zone, Alunite zone, Quartz zone, Kaolin zone, Kaolin-Quartz zone and a part of Sericite zone; Propylitic alteration such as Chlorite zone and a part of Sericite zone. All clay deposits belong to high-sulfidation (acid-sulfate) system. The rocks of the acidic alterations are composed of pyrophyllite, alunite, kaolin minerals, sericite, quartz and pyrite. On the basis of bulk chemical compositions, it was found that some components such as $SiO_2$, $TiO_2$, $Fe_2O_3$, FeO, MgO, CaO, $K_2O$ and $Na_2O$ were mobilized considerably from the original rocks. The mobility of these major elements is related to, and controls, mineral assemblages in each altered zone. Polytypes of sericite are determined as $2M_1$ and 1M by X-ray diffraction method. The amount of $2M_1$ is nearly equal to that of 1M in the Seongsan deposits whereas $2M_1$ is less and higher than that of 1M in the Ogmaesan and the Haenam deposits. These facts indicate that formation temperature of sericite is relatively high in the Haenam deposits, moderate in the Seongsan deposits, and low in the Ogmaesan deposits. The ratios of Na/(K+Na) for alunite in the Ogmaesan deposits determined by electron microprobe analyzer (EPMA) are higher than those in the Seongsan deposits. Thus, the alunite of the Ogmaesan deposits must have been formed from the solutions with relatively high aqueous Na/(K+Na) ratios and low pH at a high temperature rather than that of the Seongsan deposits. From all data, it is clarified that alunite is hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced by the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems.

  • PDF

Feldspar Diagenesis and Reseuoir History of the Miocene Temblor Formation, Kettleman North Dome, California, U.S.A. (미국 캘리포니아주 케틀만 노스돔의 마이오세 템블러층에서 장석의 속성작용과 저류암의 발달사)

  • Lee Yong Il;Boles James R.
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.16-27
    • /
    • 1995
  • The Early Miocene Temblor Formation forms an important sandstone reservoir at Kettleman North Dome oil field, California. Sandstones are mostly arkosic in composition except deepest sandstones containing much volcanic rock fragments. Arranged in paragenetic sequence prior to feldspar alteration, the Temblor sandstones contain cements of early calcite, dolomite, quartz, albite, mixed-layer ohloriteismectite (C/S) and smectite, and anhydrite. Diagenetic changes associated with feldspar are albitization of plagioclase, late calcite and laumontite cementation and grain replacement, plagioclase dissolution, and kaolinite cementation. Plagioclase albitization and late calcite and laumontite cementation in Temblor sandstones occurred at the time of maximum burial with temperatures up to $130^{\circ}C$. Volcanic plagioclases were selectively albitized. Most diagenetic changes are interpreted to have occurred before the maior uplift which occurred within the last one million years ago. Since then to the time of hydrocarbon emplacement plagioclase dissolution and kaolinite cementation occurred. This reaction occurred in relatively closed system due to the occurrence of kaolinite next to the site of plagioclase dissolution. Unaltered part of volcanic plagioclase and plutonic plagioclase which escaped albitization during maximum burial were preferentially dissolved to make plagioclase porosity. Secondary porosity resulting from dissolution of plagioclase and carbonate and anhydrite cements was mainly produced by formation waters containing organic acids released during atagenesis of organic matter.

  • PDF

Element Dispersion by the Wallrock Alteration of Janggun Lead-Zinc-Silver Deposit (장군 연-아연-은 광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.623-641
    • /
    • 2012
  • The Janggun lead-zinc-silver deposit is hydrothermal-metasomatic deposit. We have sampled wallrock, hydrother-maly-altered rock and lead-zinc-silver ore vein to study the element dispersion during wallrock alteration. The hydrothermal alteration that is remarkably recognized at this deposit consists of rhodochrositization and dolomitization. Wallrock is dolomite and limestone that consisit of calcite, dolomite, quartz, phlogopite and biotite. Rhodochrosite zone occurs near lead-zinc-silver ore vein and include mainly rhodochrosite with amounts of calcite, dolomite, kutnahorite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and stannite. Dolomite zone occurs far from lead-zinc-silver ore vein and is composed of mainly dolomite and minor calcite, rhodochrosite, pyrite, sphalerite, chalcopyrite, galena and stannite. The correlation coefficients among major, trace and rare earth elements during wallrock alteration show high positive correlations(dolomite and limestone = $Fe_2O_3(T)$/MnO, Ga/MnO and Rb/MnO), high negative correlations(dolomite = MgO/MnO, CaO/MnO, $CO_2$/MnO, Sr/MnO; limestone = CaO/MnO, Sr/MnO). Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, MnO, As, Au, Cd, Cu, Ga, Pb, Rb, Sb, Sc, Sn and Zn. Remarkable loss elements are CaO, $CO_2$, MgO and Sr. Therefore, elements(CaO, $CO_2$, $Fe_2O_3(T)$, MgO, MnO, Ga, Pb, Rb, Sb, Sn, Sr and Zn) represent a potential tools for exploration in hydrothermal-metasomatic lead-zinc-silver deposits.