• Title/Summary/Keyword: K-$\varepsilon$ model

Search Result 750, Processing Time 0.02 seconds

Prediction of Three Dimensional Turbulent flows around a MIRA Vehicle Model (MIRA Vehicle Model 주위의 3차원 난류유동 예측)

  • 명현국;진은주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.86-96
    • /
    • 1998
  • A numerical study has been carried out of three-dimensional turbulent flows around a MIRA reference vehicle model both with and without wheels in computation. Two convective difference schemes with two k-$\varepsilon$ turbulence models are evaluated for the performance such as drag coefficient, velocity and pressure fields. Pressure coefficients along the surfaces of the model are compared with experimental data. The drag coefficient, the velocity and pressure fields are found to change considerably with the adopted finite difference schemes. Drag forces computed in the various regions of the model indicate that design change decisions should not rely just on the total drag and that local flow structures are important. The results also indicate that the RNG model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient rather than the other cases.

  • PDF

A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan (허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구)

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.

Numerical Study on the Wind Flow Over Hilly Terrain (언덕지형을 지나는 유동의 수치해석적 연구)

  • 김현구;이정묵;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.65-77
    • /
    • 1997
  • A theoretical and numerical investigation on the boundary-layer flow over a two- or three-dimensional hill is presented. The numerical model is based on the finite volume method with boundary-fitted coordinates. The k-$\varepsilon$ turbulence model with modified wall function and the low-Reynolds-number model are employed. The hypothesis of Reynolds number independency for the atmospheric boundary-layer flow over aerodynamically rough terrain is confirmed by the numerical simulation. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the wind-tunnel experiments on the flow over a hill show good agreement. The linear theory provides generally good prediction of speed-up characteristics for the gentle-sloped hills. The flow separation occurs in the hill slope of 0.5 and the measured reattachment points are compared with the numerical prediction. It is found that the k- $\varepsilon$ turbulence model is reasonably accurate in predicting the attached flow, while the low- Reynolds-number model is more suitable to simulate the separated flows.ows.

  • PDF

Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct (HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구)

  • 정수진;류수열;김태훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

Prediction of Turbulent Flow Over L-Shaped Riblet Surfaces with $k-\varepsilon$ Turbulence Models ($k-\varepsilon$ 난류모델에 의한 L-형 리브렛 주위 난류유동 예측)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.93-103
    • /
    • 1998
  • The paper reports the outcome of a numerical study of flow over idealized L-shaped ribleted surfaces with two-equation turbulence models. In the present study, the Launder and Sharma's k-.epsilon. turbulence model (LS model) is basically N employed, but with a little modification of the additional .epsilon.-source term without affecting its level under 2-dimensional straining in which the term has been calibrated. Compared to the original LS model, the present model has predicted greatly improved drag reduction behavior for this geometry. As a drag reduction mechanism, it is found that the skin-friction in the riblet valleys might be sufficient to overcome the skin-friction increase near the riblet tip. The present predicted results are in good agreement with the recent DN S ones by Choi et al. (1993): differences in the mean velocity prof ile and turbulence quantities are found to be limited to the riblet cavity region. It is also found that turbulent kinetic energy and Reynolds shear stress above the riblets are also reduced in drag-reducing configurations.

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.196-199
    • /
    • 2012
  • CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow (초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정)

  • Kam, Ho Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • Assessment and validation of RANS turbulence models are conducted for the optimal analysis of supersonic converging-diverging nozzle through the comparison between computational results and experimental data. One/two equation turbulence closures such as Spalart-Allmaras, RNG k-${\varepsilon}$, and k-${\omega}$ SST are employed to simulate the two-dimensional nozzle flow. Computational results with the turbulence models mentioned fairly well predict shock structure of the nozzle-inside and pressure distribution along the wall. Especially, SST model among the employed ones shows the best agreement to experimental results.

Comparison of Turbulence Models for the Prediction of Wakes around VLCC Hull Forms

  • Kim, Wu-Joan;Kim, Do-Hyun;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.27-48
    • /
    • 2001
  • Turbulent flow calculations are performed for the two modern practical VLCCs with the sable forebody and the slightly different afterbody, i.e. KVLCC and KVLCC2. Three $\textsc{k}-\varepsilon$ turbulence models are tested to investigate the differences caused by the turbulence models. The calculated results around the two VLCC hull forms using O-O grid topology and profile-fitted surface meshes are compared to the measured data from towing tank experiment. The realizable $\textsc{k}-\varepsilon$model provided realistic wake distribution with hook-like shape, while the standard and RNG-based $\textsc{k}-\varepsilon$models failed. It is very encouraging to see that the CFD with relatively simple turbulence closure can tell the difference quantitatively as well as qualitatively for the two hull forms with stern frameline modification.

  • PDF