• Title/Summary/Keyword: K means clustering

Search Result 1,118, Processing Time 0.041 seconds

Drought Classification Method for Jeju Island using Standard Precipitation Index (표준강수지수를 활용한 제주도 가뭄의 공간적 분류 방법 연구)

  • Park, Jae-Kyu;Lee, Jun-ho;Yang, Sung-Kee;Kim, Min-Chul;Yang, Se-Chang
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1511-1519
    • /
    • 2016
  • Jeju Island relies on subterranean water for over 98% of its water resources, and it is therefore necessary to continue to perform studies on drought due to climate changes. In this study, the representative standardized precipitation index (SPI) is classified by various criteria, and the spatial characteristics and applicability of drought in Jeju Island are evaluated from the results. As the result of calculating SPI of 4 weather stations (SPI 3, 6, 9, 12), SPI 12 was found to be relatively simple compared to SPI 6. Also, it was verified that the fluctuation of SPI was greater fot short-term data, and that long-term data was relatively more useful for judging extreme drought. Cluster analysis was performed using the K-means technique, with two variables extracted as the result of factor analysis, and the clustering was terminated with seven-time repeated calculations, and eventually two clusters were formed.

Narrowband to Wideband Conversion of Speech using Modularized Neural Network (모듈화 된 신경 회로망을 이용한 음성의 Narrowband에서 Wideband로의 변환)

  • Woo Dong Hun;Ko Charm Han;Kang Hyun Min;Kim Yoo Shin;Kim Hyung Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.21-24
    • /
    • 2001
  • 본 논문은 신경 회로망을 이용하여, 전화망 대역의 음성, 즉, narrowband 음성에서 wideband 음성을 복원하고자 했다. BP 알고리즘을 사용하는 기존의 신경 회로망의 경우에는 음성과 같이 복잡하고 크기가 큰 훈련데이터에 대해서는 훈련이 제대로 되지 않는 단점이 있다. 그러므로 븐 논문에서는 이를 해결하기 위해 입력으로 들어온 LPC 켑스트럼 벡터를 k-means 알고리즘을 이용하여 미리 정한 개수의 cluster로 나눈 다음, 각각의 cluster에 대해 독립적인 신경 회로망을 적용했다 이로 인해 각각의 신경 회로망은 제한되고 서로 상관관계가 많은 음성들만 훈련하면 되므로, 기존의 신경 회로망에서 생기는 훈련의 정체를 개선할 수 있었다. 또 clustering 과정에서 생기는 오류를 보완하기 위해 후보신경 로망들의 출력에 fuzzy 개념을 적용해서 최종 출력을 내도록 했다 실험 결과에서, 제안한 알고리즘은 기존의 codebook mapping 알고리즘보다 스펙트럼 거리척도에 의한 비교 및 주관적인 음질 평가 양쪽에서 개선된 성능을 보였다.

  • PDF

Acute Leukemia Classification Using Sequential Neural Network Classifier in Clinical Decision Support System (임상적 의사결정지원시스템에서 순차신경망 분류기를 이용한 급성백혈병 분류기법)

  • Lim, Seon-Ja;Vincent, Ivan;Kwon, Ki-Ryong;Yun, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.174-185
    • /
    • 2020
  • Leukemia induced death has been listed in the top ten most dangerous mortality basis for human being. Some of the reason is due to slow decision-making process which caused suitable medical treatment cannot be applied on time. Therefore, good clinical decision support for acute leukemia type classification has become a necessity. In this paper, the author proposed a novel approach to perform acute leukemia type classification using sequential neural network classifier. Our experimental result only cover the first classification process which shows an excellent performance in differentiating normal and abnormal cells. Further development is needed to prove the effectiveness of second neural network classifier.

Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice

  • Guo, Qiang;Nan, Pulong;Zhang, Xiaoyu;Zhao, Yuning;Wan, Jian
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.491-498
    • /
    • 2015
  • Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.

Integrated Clustering Method based on Syntactic Structure and Word Similarity for Statistical Machine Translation (문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역)

  • Kim, Hankyong;Na, Hwi-Dong;Li, Jin-Ji;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.44-49
    • /
    • 2009
  • 통계기계번역에서 도메인에 특화된 번역을 시도하여 성능향상을 얻는 방법이 있다. 이를 위하여 문장의 유형이나 장르에 따라 클러스터링을 수행한다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 문장 사이의 문법적 구조 유사성으로 문장을 유형별로 분류하는 새로운 기법을 제시하였고, 단어 유사도 정보로 문서의 장르를 구분하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조의 유사성과 단어 유사도 계산을 위하여 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정은 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

  • PDF

Human Action Recognition Based on 3D Human Modeling and Cyclic HMMs

  • Ke, Shian-Ru;Thuc, Hoang Le Uyen;Hwang, Jenq-Neng;Yoo, Jang-Hee;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.662-672
    • /
    • 2014
  • Human action recognition is used in areas such as surveillance, entertainment, and healthcare. This paper proposes a system to recognize both single and continuous human actions from monocular video sequences, based on 3D human modeling and cyclic hidden Markov models (CHMMs). First, for each frame in a monocular video sequence, the 3D coordinates of joints belonging to a human object, through actions of multiple cycles, are extracted using 3D human modeling techniques. The 3D coordinates are then converted into a set of geometrical relational features (GRFs) for dimensionality reduction and discrimination increase. For further dimensionality reduction, k-means clustering is applied to the GRFs to generate clustered feature vectors. These vectors are used to train CHMMs separately for different types of actions, based on the Baum-Welch re-estimation algorithm. For recognition of continuous actions that are concatenated from several distinct types of actions, a designed graphical model is used to systematically concatenate different separately trained CHMMs. The experimental results show the effective performance of our proposed system in both single and continuous action recognition problems.

Time Management Behavior and Self-Efficacy in Nursing Students (간호대학생의 시간관리 행동유형과 자기효능감)

  • Kim, Hyun-Young;Kim, Se-Young;Seo, Hyang-Won;So, Eun-Hye
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 2011
  • Purpose: This study was done to explore time management behavior and self-efficacy in nursing students and to analyze the correlations between time management behavior and self-efficacy. Methods: The data were collected from May 12 to 20 2010 using self-report questionnaires about time management behavior and self-efficacy of nursing students. The data from 508 students were analyzed using descriptive analysis, K-means clustering, and one-way ANOVA. Results: The mean score for time management behavior was 3.03${\pm}$1.11 out of a possible 5, and self-efficacy was 3.65${\pm}$0.42 out of a possible 6. Four groups were identified according to time management behavior. The four groups were significantly different on self-efficacy total (p=<.05) and self-regulatory efficacy (p=.<005). The group with the highest score for time management had the highest score for self-efficacy. Conclusions: The results of the study indicate that time management behavior styles are related to self-efficacy for nursing students. Therefore, time management education programs based on the time management behavior styles are needed to increase self-efficacy in nursing students.

Detecting outliers in multivariate data and visualization-R scripts (다변량 자료에서 특이점 검출 및 시각화 - R 스크립트)

  • Kim, Sung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.517-528
    • /
    • 2018
  • We provide R scripts to detect outliers in multivariate data and visualization. Detecting outliers is provided using three approaches 1) Robust Mahalanobis distance, 2) High Dimensional data, 3) density-based approach methods. We use the following techniques to visualize detected potential outliers 1) multidimensional scaling (MDS) and minimal spanning tree (MST) with k-means clustering, 2) MDS with fviz cluster, 3) principal component analysis (PCA) with fviz cluster. For real data sets, we use MLB pitching data including Ryu, Hyun-jin in 2013 and 2014. The developed R scripts can be downloaded at "http://www.knou.ac.kr/~sskim/ddpoutlier.html" (R scripts and also R package can be downloaded here).

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

A Study on the Customer Segmentation and Performance by Medical Service Experience : Focusing on the Relational Benefits (의료서비스 경험에 의한 고객세분화와 성과에 관한 연구: 병원-고객 간의 관계혜택을 중심으로)

  • Park, Gwijeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.371-378
    • /
    • 2018
  • The purpose of this study is to classify the customers according to the characteristics of the relational benefits and to compare the performances of the sub-groups. As a result of the research, the group type according to the relational benefits was subdivided into 3 groups, and each group was named emotional relational group, continuous relational group and intermittent relational group considering customer characteristics. First, the emotional relational group is the group that emphasizes the empathy and assurance between the service provider and the customer, and the continuous relational group is the group with the highest social, confidence and economic benefits. The intermittent relational group was simply a transaction-oriented group. This implies that a differentiated customer management strategy is needed for each relational benefit group based on customer experience in medical services.