• Title/Summary/Keyword: K means clustering

Search Result 1,118, Processing Time 0.031 seconds

A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient (Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구)

  • Lee, Gye-Hyeok;Hwang, Min-Chae;Hyun, Dong-Yeop;Ku, Young-In;Yoo, Dong-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.363-372
    • /
    • 2022
  • Since the recent COVID-19 Pandemic, the ransomware fandom has intensified along with the expansion of remote work. Currently, anti-virus vaccine companies are trying to respond to ransomware, but traditional file signature-based static analysis can be neutralized in the face of diversification, obfuscation, variants, or the emergence of new ransomware. Various studies are being conducted for such ransomware detection, and detection studies using signature-based static analysis and behavior-based dynamic analysis can be seen as the main research type at present. In this paper, the frequency of ".text Section" Opcode and the Native API used in practice was extracted, and the association between feature information selected using K-means Clustering algorithm, Cosine Similarity, and Pearson correlation coefficient was analyzed. In addition, Through experiments to classify and detect worms among other malware types and Cerber-type ransomware, it was verified that the selected feature information was specialized in detecting specific ransomware (Cerber). As a result of combining the finally selected feature information through the above verification and applying it to machine learning and performing hyper parameter optimization, the detection rate was up to 93.3%.

Reading Children's Mind from Digital Drawings based on Dominant Color Analysis using ART2 Clustering and Fuzzy Logic (ART2 군집화와 퍼지 논리를 이용한 디지털 그림의 색채 주조색 분석에 의한 아동 심리 분석)

  • Kim, Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1203-1208
    • /
    • 2016
  • For young children who are not spontaneous or not accurate in verbal communication of their emotions and experiences, drawing is a good means of expressing their status in mind and thus drawing analysis with chromatics is a traditional tool for art therapy. Recently, children enjoy digital drawing via painting tools thus there is a growing needs to develop an automatic digital drawing analysis tool based on chromatics and art therapy theory. In this paper, we propose such an analyzing tool based on dominant color analysis. Technically, we use ART2 clustering and fuzzy logic to understand the fuzziness of subjects' status of mind expressed in their digital drawings. The frequency of color usage is fuzzified with respect to the membership functions. After applying fuzzy logic to this fuzzified central vector, we determine the dominant color and supporting colors from the digital drawings and children's status of mind is then analyzed according to the color-personality relationships based on Alschuler and Hattwick's historical researches.

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection (다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법)

  • Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

The Design of a Mobile Robot Path Planning using a Clustering method (클러스터링 기법을 이용한 모바일 로봇 경로계획 알고리즘 설계)

  • Kang, Won-Seok;Kim, Jin-Wook;Kim, Young-Duk;An, Jin-Ung;Lee, Dong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.341-342
    • /
    • 2008
  • GA(Genetic Algorithm)는 NP-Complete 도메인이나 NP-Hard 도메인 내의 문제들에 대해서 최적의 해를 찾기 위해서 많이 사용되어 지는 진화 컴퓨팅 방법 중 하나이다. 모바일 로봇 기술 중 경로계획은 NP-Complete 도메인 영역의 문제 중 하나로 이를 해결하기 위해서 Dijkstra 등의 그래프 이론을 이용한 연구가 많이 연구되었고 최근에는 GA등 진화 컴퓨팅 기법을 이용하여 최적의 경로를 찾는 연구가 많이 수행되고 있다. 그러나 모바일 로봇이 처리해야 될 공간 정보 크기가 증가함에 따라 기존 GA의 개체의 크기가 증가되어 게산 복잡도가 높아져 시간 지연등의 문제가 발생할 수 있다. 이는 모바일 로봇의 잠재적 오류로 발생될 수 있다. 공간 정보에는 동적이 장애물들이 예측 불허하게 나타 날 수 있는데 이것은 전역 경로 계획을 수립할 때 또한 반영되어야 된다. 본 논문에서는 k-means 클러스터링 기법을 이용하여 장애물 밀집도 및 거리 정보를 기반으로 공간정보를 k개의 군집 공간으로 재분류하여 이를 기반으로 N*M개의 그리드 개체 집단을 생성하여 최적 경로계획을 수립하는 GA를 제시한다.

  • PDF

Acoustic Emission Source Characterization and Fracture Behavior of Finite-width Plate with a Circular Hole Defect using Artificial Neural Network (인공신경회로망을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원특성과 파괴거동에 관한 연구)

  • Rhee, Zhang-Kyu;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2009
  • The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.

A Task Offloading Approach using Classification and Particle Swarm Optimization (분류와 Particle Swarm Optimization을 이용한 태스크 오프로딩 방법)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Innovations from current researches on cloud computing such as applying bio-inspired computing techniques have brought new level solutions in offloading mechanisms. With the growing trend of mobile devices, mobile cloud computing can also benefit from applying bio-inspired techniques. Energy-efficient offloading mechanisms on mobile cloud systems are needed to reduce the total energy consumption but previous works did not consider energy consumption in the decision-making of task distribution. This paper proposes the Particle Swarm Optimization (PSO) as an offloading strategy of cloudlet to data centers where each task is represented as a particle during the process. The collected tasks are classified using K-means clustering on the cloudlet before applying PSO in order to minimize the number of particles and to locate the best data center for a specific task, instead of considering all tasks during the PSO process. Simulation results show that the proposed PSO excels in choosing data centers with respect to energy consumption, while it has accumulated a little more processing time compared to the other approaches.

Feature Extraction and Classification of Posture for Four-Joint based Human Motion Data Analysis (4개 관절 기반 인체모션 분석을 위한 특징 추출 및 자세 분류)

  • Ko, Kyeong-Ri;Pan, Sung Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.117-125
    • /
    • 2015
  • In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this study, we collected users' postures and judged whether they are normal or abnormal. To obtain a user's posture, we propose a four-joint motion capture system that uses inertial sensors. The system collects the subject's postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints' rotation angles and positions; the normal posture judgment reached a success rate of 99.79%. This result suggests that the features of the four joints can be used to judge and help correct a user's posture through application to a spinal disease prevention system in the future.

KOCED performance evaluation in the wide field of wireless sensor network (무선센서망 내 KOCED 라우팅 프로토콜 광역분야 성능평가)

  • Kim, TaeHyeon;Park, Sea Young;Yun, Dai Yeol;Lee, Jong-Yong;Jung, Kye-Dong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.379-384
    • /
    • 2022
  • In a wireless sensor network, a large number of sensor nodes are deployed in an environment where direct access is difficult. It is difficult to supply power, such as replacing the battery or recharging it. It is very important to use the energy with the sensor node. Therefore, an important consideration to increase the lifetime of the network is to minimize the energy consumption of each sensor node. If the energy of the wireless sensor node is exhausted and discharged, it cannot function as a sensor node. Therefore, it is a method proposed in various protocols to minimize the energy consumption of nodes and maintain the network for a long time. We consider the center point and residual energy of the cluster, and the plot point and K-means (WSN suggests optimal clustering). We want to evaluate the performance of the KOCED protocol. We compare protocols to which the K-means algorithm, one of the latest machine learning methods, is applied, and present performance evaluation factors.

Study on the grading standard of Panax notoginseng seedlings

  • Chen, Lijuan;Yang, Ye;Ge, Jin;Cui, Xiuming;Xiong, Yin
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.208-217
    • /
    • 2018
  • Background: The quality differences in seedlings of medicinal herbs often affect the quality of medicinal parts. The establishment of the grading standard of Panax notoginseng seedlings is significant for the stable quality of medicinal parts of P. notoginseng. Methods: To establish the grading standard of P. notoginseng seedlings, a total of 36,000 P. notoginseng seedlings were collected from 30 producing areas, of which the fresh weight, root length, root diameter, bud length, bud diameter, and rootlet number were measured. The K-means clustering method was applied to grade seedlings and establish the grading standard. Results: The fresh weight and rootlet number of P. notoginseng seedlings were determined as the final indices of grading. P. notoginseng seedlings from different regions of Yunnan could be preliminarily classified into four grades: the special grade, the premium grade, the standard grade, and culled seedlings. Conclusion: The grading standard was proven to be reasonable according to the agronomic characters, emergence rate, and photosynthetic efficiency of seedlings after transplantation, and the yields and contents of active constituents of the medicinal parts from different grades of seedlings.