In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.
실제 영상과 가상의 오브젝트 또는 가상의 환경에 오브젝트를 합성하는 경우 등 사실적인 합성을 결과를 얻기 위해서는 실제 환경과 같은 배경 영상의 정확한 광원 정보가 필요하다. 본 논문에서는 실내 환경을 배경으로 영상을 합성 하는 과정에 필요한 광원정보를 카메라와 Light Probe를 이용하여 촬영된 단일 영상으로부터 추정하는 기법을 제안한다. 실내에 존재하는 광원들은 정확한 위치정보를 알 수 없는 실외환경에서와 달리 제한된 공간의 원점으로부터 3차원 공간에 위치한 좌표로 나타낼 수 있다. 광원을 추정하기 위해 먼저 실내 공간에 반사도가 높은 Light Probe를 위치하고 디지털 카메라의 적정 노출을 이용하여 광원 추정에 사용할 영상을 획득한다. 광원으로 존재하는 오브젝트의 경우 짧은 노출시간에도 카메라의 영상에 획득된다. 그렇기 때문에 단일 영상에서 광원의 영역을 추정하기 위해 영상처리를 통해 노출 시간을 짧게 하여 촬영한 영상과 비슷하게 밝은 영역만 표현되도록 처리를 한다. 전 처리된 영상으로부터 밝은 영역과 어두운 영역으로 구분을 하고 밝은 영역으로부터 광원의 정보를 추정한다. 추정된 광원들은 실제 렌더링에 곧바로 적용이 가능하며, 이를 통해 배경에 적합한 렌더링 결과를 얻을 수 있다.
Journal of information and communication convergence engineering
/
v.15
no.2
/
pp.85-90
/
2017
Expert systems for health diagnosis are only for medical experts who have deep knowledge in the field but we need a self-checking pre-diagnosis system for preventive public health monitoring. Korea Traditional Medicine is popular in use among Korean public but there exist few available health information systems on the internet. A computerized self-checking diagnosis system is proposed to reduce the social cost by monitoring health status with simple symptom checking procedures especially for Korea Traditional Medicine users. Based on the national reports for disease/symptoms of Korea Traditional Medicine, we build a reliable database and devise an intelligent inference engine using fuzzy c-means clustering. The implemented system gives five most probable diseases a user might have with respect to symptoms given by the user. Inference results are verified by Korea Traditional Medicine doctors as sufficiently accurate and easy to use.
The number of people using Seoul metropolitan subway is continually raising as the population and cars keep increasing. But recently, many people have a feeling of anxiety about several problems such as a fire and air pollution. Thus, the purpose of this paper is to propose a method which can improve the customer satisfaction. There are lots of positive and negative factors that influence people. To understand and analyze these factors, we conducted a questionnaire survey of people who usually use subway. From the obtained data, principle component analysis and K-means clustering method were implemented. Finally, for customer satisfaction, the factors which are needed to be concerned or solved are identified using cross-tabulation.
The Journal of Korean Institute of Communications and Information Sciences
/
v.21
no.9
/
pp.2456-2469
/
1996
A digital satellite communication channel has a nonlinearity with memory due to saturation characeristis of the high poer amplifier in the satellite and transmitter/receiver linear filter used in the overall system. In this paper, we propose a complex radial basis function network(CRBFN) based adaptive equalizer for compensation of nonlinearities in digital satellite communication channels. The proposed CRBFN untilizes a complex-valued hybrid learning algorithm of k-means clustering and LMS(least mean sequare) algorithm that is an extension of Moody Darken's algorithm for real-valued data. We evaluate performance of CRBFN in terms of symbol error rates and mean squared errors nder various noise conditions for 4-PSK(phase shift keying) digital modulation schemes and compare with those of comples pth order inverse adaptive Volterra filter. The computer simulation results show that the proposed CRBFN ehibits good equalization, low computational complexity and fast learning capabilities.
본 논문에서는 연결수락 제어시 사용자가 전송하는 트래픽 파라메타(샐 개수의 분산값과 평균값)를 압축하여 망에 신고하는 방법을 제안하고, 압축방법에 의한 연결수락제어의 성능을 분석 비교한다. 트래픽 파라메타 압축방법은 K-means, CL(Competitive Learning), Fuzzy ISODATA,FNC(Fuzzy Neural Clustering)를 사용한다. 제안한 트래픽 파라메타의 압축에 의한 연결수락제어는 퍼지 매핑함수(Fuzzy Mapping Funciton)fp 의해 신고한 트래픽 패턴을 추정하고, 전방향 구조의 신경망을 사용하여 연결의 수락/거절을 결정한다. ON-OFF 트래픽 모델 환경에서 컴퓨터 실험을 통하여 여러 가지 압축방법들을 사용한 연결수락제어의 성능을 Fuzziness 값에 따라 비교하였고, 그 결과 FNC 방법이 우수함을 알 수 있었다. EH한 연결수락제어의 성능을 높히기 위해서 관측 프레임의 셀 분산값이 크면 Fuzziness 값을 작게 선정하고, 작으면 상대적으로 크게 선정해야 함을 알 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.1587-1590
/
2012
인터넷의 활용이 보편화 됨에 따라 정보의 양은 급격히 늘어나고 있다. 이에 취업을 희망하는 구직자의 경우 IR 로부터 원하는 정보를 검색하기 위해 과거보다 더 많은 시간과 노력이 필요하게 되었다. 이에 본 논문에서는 TF(Term Frequency)기법을 통해 문서를 추출하고 추출된 문서의 Doc_ID 빈도수를 기준으로 한 내용기반과 군집기법을 혼합한 하이브리드 검색 시스템을 제안한다. 구직자들이 클릭한 취업정보들의 링크번호들을 K-means 알고리즘을 이용하여 군집화를 한다. 생성된 군집들은 각기 하나의 문서로 가정하고, 기존 문서과 더불어 검색 주제와 연관성을 갖고 있는 문서들을 동적비율로 검색 랭킹 하는 방식이다. 기존의 IR 기술과의 비교 실험을 통해 성능을 평가하였다. 실험결과 본 논문에서 제안한 방법이 기존의 방법보다 우수함을 확인할 수 있었다
Detection of outliers deviating normal data distribution in high dimensional data is an important technique in many application areas. In this paper, a distance-based outlier detection method using landmarks in high dimensional data is proposed. Given normal training data, the k-means clustering method is applied for the training data in order to extract the centers of the clusters as landmarks which represent normal data distribution. For a test data sample, the distance to the nearest landmark gives the outlier score. In the experiments using high dimensional data such as images and documents, it was shown that the proposed method based on the landmarks of one-tenth of training data can give the comparable outlier detection performance while reducing the time complexity greatly in the testing stage.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.453-456
/
2004
전자상거래에서 추천 시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링 기술은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반한다. 협동적 필터링이 유사 선호도를 갖는 이웃 고객들의 평가에 근거하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것은 추천 시스템에서 예측의 질 향상을 위해 필요하다. 본 논문에서 우리는 ordered clustering을 이용하여 협동적 필터링을 위한 향상된 이웃선정 방법을 제안한다. 이 방법은 탐색 공간을 줄이기 위해 k-means 클러스터링 방법을 사용한다. 그리고 클러스터링에 의해 구성된 고객들에 대해서 threshold 값에 의해 보다 정제된 고객들을 최종 선정함으로써 고객에게 보다 의미 있는 적합한 고객이 최종적인 이웃으로 선정될 수 있도록 한다. 실험은 Compaq Computer Corporation에 의해 제공된 EachMovie 데이터 셋을 사용하였다. 실험 결과로 우리는 제안한 방법이 다른 방법보다 좋은 예측 정확도를 갖는 것을 확인할 수 있었다.
Journal of the Korea Society of Computer and Information
/
v.24
no.6
/
pp.165-174
/
2019
Naval ship maintenance generally produces various issues for effective maintenance methods and procedures, because they have been composed by numerous modules and systems, and manual-oriented maintenance needed well-trained technicians who always busy to do many other works. In this paper, we adapt SNA scheme to the service procedure and trends of ROK naval ships' equipments. Various SNA algorithms are deployed which show lots of operating options, and we show analysis results that have enough potential improvement points for the maintainers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.