• Title/Summary/Keyword: K means clustering

Search Result 1,118, Processing Time 0.029 seconds

Structure Preserving Dimensionality Reduction : A Fuzzy Logic Approach

  • Nikhil R. Pal;Gautam K. Nandal;Kumar, Eluri-Vijaya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.426-431
    • /
    • 1998
  • We propose a fuzzy rule based method for structure preserving dimensionality reduction. This method selects a small representative sample and applies Sammon's method to project it. The input data points are then augmented by the corresponding projected(output) data points. The augmented data set thus obtained is clustered with the fuzzy c-means(FCM) clustering algorithm. Each cluster is then translated into a fuzzy rule for projection. Our rule based system is computationally very efficient compared to Sammon's method and is quite effective to project new points, i.e., it has good predictability.

  • PDF

Cyber-attack group analysis method based on association of cyber-attack information

  • Son, Kyung-ho;Kim, Byung-ik;Lee, Tae-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.260-280
    • /
    • 2020
  • Cyber-attacks emerge in a more intelligent way, and various security technologies are applied to respond to such attacks. Still, more and more people agree that individual response to each intelligent infringement attack has a fundamental limit. Accordingly, the cyber threat intelligence analysis technology is drawing attention in analyzing the attacker group, interpreting the attack trend, and obtaining decision making information by collecting a large quantity of cyber-attack information and performing relation analysis. In this study, we proposed relation analysis factors and developed a system for establishing cyber threat intelligence, based on malicious code as a key means of cyber-attacks. As a result of collecting more than 36 million kinds of infringement information and conducting relation analysis, various implications that cannot be obtained by simple searches were derived. We expect actionable intelligence to be established in the true sense of the word if relation analysis logic is developed later.

Heart Extraction and Division between Left and Right Heart from Cardiac CTA

  • Kang, Ho Chul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.19-24
    • /
    • 2017
  • In this paper, we propose an automatic segmentation method of left and right heart in computed tomography angiography (CTA) using separating energy function. First, we smooth the images by applying anisotropic diffusion filter to remove noise. Then, the volume of interest (VOI) is detected by using k-means clustering. Finally, we extract the left and right heart with separating energy function which we proposed to split the heart. We tested our method in ten CT images and they were obtained from a different patient. For the evaluation of the computational performance of the proposed method, we measured the total processing time. The average of total processing time, from first step to third step, was $14.39{\pm}1.17s$. We expect for our method to be used in cardiac diagnosis for cardiologist.

Accurate Location Identification by Landmark Recognition

  • Jian, Hou;Tat-Seng, Chua
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.164-169
    • /
    • 2009
  • As one of the most interesting scenes, landmarks constitute a large percentage of the vast amount of scene images available on the web. On the other hand, a specific "landmark" usually has some characteristics that distinguish it from surrounding scenes and other landmarks. These two observations make the task of accurately estimating geographic information from a landmark image necessary and feasible. In this paper, we propose a method to identify landmark location by means of landmark recognition in view of significant viewpoint, illumination and temporal variations. We use GPS-based clustering to form groups for different landmarks in the image dataset. The images in each group rather fully express the possible views of the corresponding landmark. We then use a combination of edge and color histogram to match query to database images. Initial experiments with Zubud database and our collected landmark images show that is feasible.

  • PDF

The Classification of the Software Quality by the Rough Tolerance Class

  • Choi, Wan-Kyoo;Lee, Sung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.249-253
    • /
    • 2004
  • When we decide the software quality on the basis of the software measurement, the transitive property which is a requirement for an equivalence relation is not always satisfied. Therefore, we propose a scheme for classifying the software quality that employs a tolerance relation instead of an equivalence relation. Given the experimental data set, the proposed scheme generates the tolerant classes for elements in the experiment data set, and generates the tolerant ranges for classifying the software quality by clustering the means of the tolerance classes. Through the experiment, we showed that the proposed scheme could product very useful and valid results. That is, it has no problems that we use as the criteria for classifying the software quality the tolerant ranges generated by the proposed scheme.

Visualizing Multi-Variable Prediction Functions by Segmented k-CPG's

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.185-193
    • /
    • 2009
  • Machine learning methods such as support vector machines and random forests yield nonparametric prediction functions of the form y = $f(x_1,{\ldots},x_p)$. As a sequel to the previous article (Huh and Lee, 2008) for visualizing nonparametric functions, I propose more sensible graphs for visualizing y = $f(x_1,{\ldots},x_p)$ herein which has two clear advantages over the previous simple graphs. New graphs will show a small number of prototype curves of $f(x_1,{\ldots},x_{j-1},x_j,x_{j+1}{\ldots},x_p)$, revealing statistically plausible portion over the interval of $x_j$ which changes with ($x_1,{\ldots},x_{j-1},x_{j+1},{\ldots},x_p$). To complement the visual display, matching importance measures for each of p predictor variables are produced. The proposed graphs and importance measures are validated in simulated settings and demonstrated for an environmental study.

A Study on Vector Data Compression using K-means Clustering (K평균 군집화를 이용한 벡터데이터 압축 기법 연구)

  • Lee, Dong-Heon;Chun, Woo-Je;Park, Soo-Hong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.132-138
    • /
    • 2004
  • 최근 이동전화, PDA, 텔레매틱스 단말기 등과 같은 모바일 기기에서 공간데이터에 대한 사용이 증가하고 있다. 하지만 모바일 기기의 저장 공간이 늘어났음에도 불구하고 여전히 공간데이터에 대한 요구를 수용하기에는 한계가 있다. 따라서 본 연구에서는 모바일 환경에서 사용 가능한 공간데이터에 대한 손실 압축 기법을 제시하고, 실험을 통한 압축률, 데이터 손실률을 분석하여 연구의 타당성과 적용 가능성을 제시하고자 한다. 세부적으로 압축률과 데이터 손실에 따르는 위치 정확도 관계에서 위치정확도를 높일 수 있는 방향을 모색하여 보았다. 그리고 다양한 군집화 기법 중 연구에 적용 가능한 기법을 선정 이용하였다. 또한 저장 공간뿐만 아닌 연산 성능 측면에서도 열악한 모바일 환경에서 만족할 만한 복원 성능을 보여야 한다. 따라서 압축된 데이터를 복원하는데 소요되는 비용을 최소화할 수 있는 방향이 연구되었다.

  • PDF

A Study On The Optimum Node Deployment In The Wireless Sensor Network System (무선센서 네트워크의 최적화 노드배치에 관한 연구)

  • Choi, Weon-Gab;Park, Hyung-Moo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.99-100
    • /
    • 2006
  • One of the fundamental problems in sensor networks is the deployment of sensor nodes. The Fuzzy C-Means(FCM) clustering algorithm is proposed to determine the optimum location and minimum number of sensor nodes for the specific application space. We performed a simulation using two dimensional L shape model. The actual length of the L shape model is about 100m each. We found the minimum number of 15 nodes are sufficient for the complete coverage of modeled area. We also found the optimum location of each nodes. The real deploy experiment using 15 sensor nodes shows the 95.7%. error free communication rate.

  • PDF

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.405-406
    • /
    • 2007
  • 본 논문에서는 FCM 기반 퍼지 뉴럴네트워크 구조를 제안하고 진화 알고리즘을 이용한 FCM 기반 퍼지 뉴럴네트워크의 구조와 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM 기반 뉴럴 네트워크에서 멤버쉽함수는 가우시안, 삼각형 타입등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 후반부는 상수형, 선형, 2차식 등의 다양한 다항식 구조로 표현될 수 있으며 다항식의 계수는 LSE를 이용하여 결정한다. FCM 기반 퍼지 뉴럴 네트워크는 퍼지규칙의 수, 입력변수의 선택, 후반부 다항식의 차수, FCM의 퍼지화 계수의 결정은 성능에 많은 차이가 있으며 이러한 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 유전자 알고리즘을 이용하여 FCM 기반 퍼지뉴럴네트워크의 구조에 관련된 입력변수의 수, 퍼지규칙의 수 그리고 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화 한다. 제안된 방법은 비선형 시스템의 모델링에 적용하여 성능을 분석하였다.

  • PDF

A Topic Classification System in cQA Services Based on Semi-Automatic Learning Using Wikipedia (위키피디아를 이용한 반자동 학습 기반의 cQA 서비스 주제 분류 시스템)

  • Kim, Taehyun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.139-141
    • /
    • 2015
  • 본 논문은 커뮤니티 기반의 질의-응답 서비스에서 사용자 질의의 주제를 분류하는 시스템을 소개한다. 커뮤니티 기반의 질의-응답 서비스는 분야에 따라 다양한 주제를 가질 수 있으며 오늘 날 사용자 질의의 주제 분류에는 통계 기반의 분류 방법이 많이 이용되고 있다. 통계 기반의 분류 방법으로 사용자 질의를 분류하기 위해서는 주제에 적합한 대량의 학습 말뭉치가 필요하다. 주제에 적합한 대량의 학습 말뭉치를 사람이 직접 구축하는 것은 많은 시간과 비용이 든다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 위키피디아 문서를 Supervised K-means Clustering 기법으로 주제별로 분류함으로써 학습 말뭉치를 반자동으로 구축하는 방법을 제안한다. 그 다음, 생성된 학습 말뭉치로 지지 벡터 기계를 학습하여 사용자 질의의 주제를 분류하게 된다. 위키피디아 문서와 사용자 질의는 다른 도메인의 문서임에도 불구하고 본 논문의 시스템으로 사용자 질의의 주제를 분류한 결과 77.33%의 정확도를 보였다.

  • PDF