Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed our approach consists of three stages: (i) data pre-processing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.
라벨 없이 진행되는 비지도 학습 중 하나인 군집분석은 자료에 어떤 그룹이 내포되어 있는지 사전 지식이 없을 경우에 군집을 발굴하고, 군집 간의 특성 차이와 군집 안에서의 유사성을 분석하고자 할 때 유용한 방법이다. 기본적인 군집분석 중 하나인 K-means 방법은 변수의 개수가 많아질 때 잘 동작하지 않을 수 있으며, 군집에 대한 해석도 쉽지 않은 문제가 있다. 따라서 고차원 자료의 경우 주성분 분석과 같은 차원 축소 방법을 사용하여 변수의 개수를 줄인 후에 K-means 군집분석을 행하는 Tandem 군집분석이 제안되었다. 하지만 차원 축소 방법을 이용해서 찾아낸 축소 차원이 반드시 군집에 대한 구조를 잘 반영할 것이라는 보장은 없다. 특히 군집의 구조와는 상관없는 변수들의 분산 또는 공분산이 클 때, 주성분 분석을 통한 차원 축소는 오히려 군집의 구조를 가릴 수 있다. 이에 따라 군집분석과 차원 축소를 동시에 진행하는 방법들이 제안되어 왔다. 그 중에서도 본 연구에서는 De Soete와 Carroll (1994)이 제안한 방법론을 확률적인 모형으로 바꿔 군집분석을 진행하는 확률적 reduced K-means를 제안한다. 모의실험 결과 차원 축소를 배제한 군집분석과 Tandem 군집분석보다 더 좋은 군집을 형성함을 알 수 있었고 군집 당 표본 크기에 비해 변수의 개수가 많은 자료에서 기존의 비 확률적 reduced K-means 군집분석에 비해 우수한 성능을 확인했다. 보스턴 자료에서는 다른 군집분석 방법론보다 명확한 군집이 형성됨을 확인했다.
Alignment of 2D-gel images of biological samples can visualize the difference of expression profiles and also inform us candidates of protein spots to be further analyzed. However, comparison of two proteome images between case and control does not always successfully identify differentially expressed proteins due to sample-to-sample variation. Because of poor reproducibility of 2D-gel electrophoresis, sample-by-sample variations and inconsistent electrophoresis conditions, multiple number of 2D-gel image must be processed to align each other to visualize the difference of expression profiles and to deduce the protein spots differentially expressed with reliability. Alignment of multiple 2D-Gel images and their clustering were carried out by applying various algorithms and statistical methods. In order to align multiple images, multiresolution-multilevel algorithm was found out to be suitable for fast alignment and for distorted images. Clustering of 12 different images implementing a k-means algorithm gives a phylogenetic tree of distance map of the proteomes. Microsoft Visual C++ was used to implement the algorithms in this work.
In this paper, we propose an efficient method to detect abrupt shot changes in compressed MPEG video data by using reference ratios among video frames. The reference ratios among video frames imply the degree of similarities among adjacent frames by prediction coded type of each frames. A shot change is detected if the similarity degrees of a frame and its adjacent frames are low. This paper proposes an efficient shot change detection algorithm by using Fuzzy c-means(FCM) clustering algorithm. The FCM clustering uses the shot change probabilities evaluated in the mask matching of reference ratios and difference measure values based on frame reference ratios.
This study proposes a method for investigating current patents related to information communication technology and smart mobility to provide insights into future technology trends. The method is based on text mining clustering analysis. The method consists of two stages, which are data preparation and clustering analysis, respectively. In the first stage, tokenizing, filtering, stemming, and feature selection are implemented to transform the data into a usable format (structured data) and to extract useful information for the next stage. In the second stage, the structured data is partitioned into groups. The K-medoids algorithm is selected over the K-means algorithm for this analysis owing to its advantages in dealing with noise and outliers. The results of the analysis indicate that most current patents focus mainly on smart connectivity and smart guide systems, which play a major role in the development of smart mobility.
스마트교통카드 데이터는 대표적인 모빌리티 데이터로 이를 이용하여 대중교통 이용행태를 분석하고 정책 개발에 활용할 수 있다. 본 논문은 이러한 연구의 하나로 전철 이용패턴을 이용하여 전철역들을 분류하는 문제를 다룬다. 전철역의 클러스터링을 다룬 기존 논문들은 이용행태 중 통행량만을 고려하였기에 본 논문은 이에 대한 보완적인 방법의 하나로 통행시간을 고려한 클러스터링을 제안한다. 각 역의 승객들을 출근 시간 출발, 출근 시간 도착, 퇴근 시간 출발, 퇴근 시간 도착 승객들로 분류한 다음 각각의 통행시간을 와이블 분포로 모형화하여 추정한 형상모수를 역의 특성값으로 정의하였다. 그리고 특성 벡터들을 K-평균 클러스터링 기법을 사용하여 클러스터링하였다. 실험결과 통행시간을 고려하여 역의 클러스터링을 수행하면 기존 연구의 클러스터링 결과와 유사한 결과가 나올 뿐만 아니라 더 세분화 된 클러스터링이 가능함을 관찰하였다.
본 연구는 주파수 및 시간 특성을 활용하여 머신러닝 기반 공동주택 주거소음의 군집화 및 분류를 진행하였다. 먼저, 공동주택 주거소음의 군집화 및 분류를 진행하기 위하여 주거소음원 데이터셋을 구축하였다. 주거소음원 데이터셋은 바닥충격음, 공기전달음, 급배수 및 설비소음, 환경소음, 공사장 소음으로 구성되었다. 각 음원의 주파수 특성은 1/1과 1/3 옥타브 밴드별 Leq와 Lmax값을 도출하였으며, 시간적 특성은 5 s 동안의 6 ms 간격의 음압레벨 분석을 통해 Leq값을 도출하였다. 공동주택 주거소음원의 군집화는 K-Means clustering을 통해 진행하였다. K-Means의 k의 개수는 실루엣 계수와 엘보우 방법을 통해 결정하였다. 주파수 특성을 통한 주거소음원 군집화는 모든 평가지수에서 3개로 군집되었다. 주파수 특성 기준으로 분류된 각 군집별 시간적 특성을 통한 주거소음원 군집화는 Leq평가지수의 경우 9개, Lmax 경우는 11개로 군집되었다. 주파수 특성을 통해 군집된 각 군집은 타 주파수 대역 대비 저주파 대역의 음에너지의 비율 또한 조사되었다. 이후, 군집화 결과를 활용하기 위한 방안으로 세 종류의 머신러닝 방법을 이용해 주거소음을 분류하였다. 주거소음 분류 결과, 1/3 옥타브 밴드의 Leq값으로 라벨링된 데이터에서 가장 높은 정확도와 f1-score가 나타났다. 또한, 주파수 및 시간적 특성을 모두 사용하여 인공신경망(Artificial Neural Network, ANN) 모델로 주거소음원을 분류했을 때 93 %의 정확도와 92 %의 f1-score로 가장 높게 나타났다.
유역 단위 수문 및 수질 평가 모형인 SWAT 모형을 이용한 유역 내 정확한 수문과 비점오염원 거동을 평가하기 위해서는 유역 적용에 앞서 모형의 정확성 평가가 우선시 되어야 한다. SWAT 모형의 수문 보정및 검정 시, Nash-Sutcliffe의 효율계수(EI)가 널리 사용되고 있다. 그러나 이러한 EI 값은 비교되어지는 값들의 범위 중 큰 값 즉, 수문 분석에 있어 고유량에 대해 민감하게 영향을 받는 것으로 알려져 있다. 그리하여 본 연구에서는 보다 정확한 수문 분석을 위해 K-means 군집화 알고리즘을 이용한 웹기반의 EI 평가시스템을 개발하였고, 이를 SWAT 모형의 수문 평가에 적용하였다. 본 연구의 결과 전체 유량의 EI 값은 높았지만, 수문성분에 따른 EI 값은 높지 않았다. SWAT 모형의 수문 보정 및 검정에 널리 활용되고 있는 SWAT auto-calibration tool은 전체 유량에 대해서는 높은 EI 값을 산정하는 것으로 보이지만, 직접유출과 기저유출 각각에 대한 유량 그룹 I 과 II 에 대해서는 대부분 음수(-)의 EI 값을 보였다. 그리하여 본 연구 결과를 통해 SWAT 모형의 수문성분 평가에 있어 보다 정확한 평가를 위해서는 직접유출과 기저유출에 대한 각각의 유량 그룹에 대해 양수(+)의 EI 값이 산정되도록 모형 보정 및 검정의 수행 필요할 것으로 사료된다.
클러스터링은 데이터 포인트들을 그룹으로 묶어 데이터를 분석하는데 유용하다. 특히 K-means는 가장 널리 쓰이는 클러스터링 알고리즘으로 k개의 군집(Cluster)을 찾는다. 본 논문에서는 기존의 K-means 알고리즘과 비교해 고차원 대규모데이터에 대해서 효율적으로 동작하는 K-means 알고리즘을 제안한다. 제안된 알고리즘은 기존의 알고리즘에서와 같이 거리 정보를 이용해 불필요한 계산을 줄여나가며 또한 움직임 없는 군집들을 계산에서 제외하여 수행시간을 단축한다. 제안된 알고리즘은 기존의 관련연구에서 제안된 알고리즘에 비해 공간을 적게 쓰면서 동시에 빠르다. 실제 고차원 데이터 실험을 통해서 제안된 알고리즘의 효율성을 보였다.
본 논문에서는 이 문서 클러스터링 방법 중 계층적 방법인 Kmeans 클러스터링 알고리즘을 이용하여 문서를 클러스터링 하고자 한다. 기존의 Kmeans 클러스터링 알고리즘은 문서의 수가 많을 경우 하나의 클러스터링에 너무 많은 문서들이 할당되는 문제점이 있다. 이 치우침을 완화하고자 각 클러스터링에 할당된 문서 수에 따라서 문서에 가중치를 부여한 후 다시 클러스터링을 하는 방법을 제안하였다. 실험 결과는 정확률, 재현율을 결합한 조화 평균(F-measure)을 사용하여 평가하였으며 기존 알고리즘보다 9%이상의 성능 향상을 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.