• Title/Summary/Keyword: K means clustering

Search Result 1,118, Processing Time 0.027 seconds

An Automatic Cut Detection Algorithm Using Median Filter And Neural Network ITC-CSCC'2000

  • Jun, Seung-Chul;Park, Sung-Han
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1049-1052
    • /
    • 2000
  • In this paper, an efficient method to find cut in the MPEG stream data is proposed. For this purpose, histogram difference and pixel difference is considered as a noise signal. The signal is then filtered out by a median filter to make the frame difference larger. The frame difference obtained in this way is classified into cut frame and non-cut frame by the 2-means clustering without using any threshold value. To improve the classification ratio, a back-propagation neural network is constructed, where outputs of 2-means clustering are used as the inputs of the network. The simulation results demonstrate the performance of the proposed methods.

  • PDF

Radial basis function network design for chaotic time series prediction (혼돈 시계열의 예측을 위한 Radial Basis 함수 회로망 설계)

  • 신창용;김택수;최윤호;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.602-611
    • /
    • 1996
  • In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes's model and the radial basis function network by nonrecursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.

  • PDF

Modeling and Verification of Eco-Driving Evaluation

  • Lin Liu;Nenglong Hu;Zhihu Peng;Shuxian Zhan;Jingting Gao;Hong Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.296-306
    • /
    • 2024
  • Traditional ecological driving (Eco-Driving) evaluations often rely on mathematical models that predominantly offer subjective insights, which limits their application in real-world scenarios. This study develops a robust, data-driven Eco-Driving evaluation model by integrating dynamic and distributed multi-source data, including vehicle performance, road conditions, and the driving environment. The model employs a combination weighting method alongside K-means clustering to facilitate a nuanced comparative analysis of Eco-Driving behaviors across vehicles with identical energy consumption profiles. Extensive data validation confirms that the proposed model is capable of assessing Eco-Driving practices across diverse vehicles, roads, and environmental conditions, thereby ensuring more objective, comprehensive, and equitable results.

Comparison of Segmentation based on Threshold and KCMeans Method

  • R.Spurgen Ratheash;M.Mohmed Sathik
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.93-96
    • /
    • 2024
  • The segmentation, detection, and extraction of infected tumour area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated many algorithm methods are available in medical imaging amongst them the Threshold technique brain tumour segmentation process gives an accurate result than other methods for MR images. The proposed method compare with the K-means clustering methods, it gives a cluster of images. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, process time and similarity of the segmented part. The experimental results achieved more accuracy, less running time and high resolution.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

A Comparison of Cluster Analyses and Clustering of Sensory Data on Hanwoo Bulls (군집분석 비교 및 한우 관능평가데이터 군집화)

  • Kim, Jae-Hee;Ko, Yoon-Sil
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.745-758
    • /
    • 2009
  • Cluster analysis is the automated search for groups of related observations in a data set. To group the observations into clusters many techniques has been proposed, and a variety measures aimed at validating the results of a cluster analysis have been suggested. In this paper, we compare complete linkage, Ward's method, K-means and model-based clustering and compute validity measures such as connectivity, Dunn Index and silhouette with simulated data from multivariate distributions. We also select a clustering algorithm and determine the number of clusters of Korean consumers based on Korean consumers' palatability scores for Hanwoo bull in BBQ cooking method.

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

An Analysis of Player Types using Data Clustering in Gamification (데이터 클러스터링을 활용한 게이미피케이션 환경에서의 플레이어 유형 분석)

  • Park, Sungjin;Kang, Bumsoo;Kim, Sungsoo;Kim, Sangkyun
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.77-88
    • /
    • 2017
  • The purpose of this study is to compare existing player type theories using data clustering. For the study, 235 result data of the gamified class in second semester of A university at 2016 used. This study applied K-means and Silhouette to decide the appropriate number of clusters. The player types applied in this study are Bartle's 2-D and 3-D player types, Ferro's five types, and BrainHex. According to the results, Bartle's 2D player type was found to be the best in perspective of data clustering. This study also analyzed the distribution of characteristics for each player types. The results of this study are expected to have an impact on player analysis, which is used in the application of gamification or in the development process.

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

A Clustering Approach for Feature Selection in Microarray Data Classification Using Random Forest

  • Aydadenta, Husna;Adiwijaya, Adiwijaya
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 2018
  • Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.