• Title/Summary/Keyword: K means clustering

Search Result 1,118, Processing Time 0.103 seconds

Disease Detection Algorithm Based on Image Processing of Crops Leaf (잎사귀 영상처리기반 질병 감지 알고리즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • Many Studies have been actively conducted on the early diagnosis of the crop pest utilizing IT technology. The purpose of the paper is to discuss on the image processing method capable of detecting the crop leaf pest prematurely by analyzing the image of the leaf received from the camera sensor. This paper proposes an algorithm of diagnosing leaf infection by utilizing an improved K means clustering method. Leaf infection grouping test showed that the proposed algorithm illustrated a better performance in the qualitative evaluation.

  • PDF

An Optimization Approach to Data Clustering

  • Kim, Ju-Mi;Olafsson, Sigurdur
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.621-628
    • /
    • 2005
  • Scalability of clustering algorithms is critical issues facing the data mining community. This is particularly true for computationally intense tasks such as data clustering. Random sampling of instances is one possible means of achieving scalability but a pervasive problem with this approach is how to deal with the noise that this introduces in the evaluation of the learning algorithm. This paper develops a new optimization based clustering approach using an algorithms specifically designed for noisy performance. Numerical results illustrate that with this algorithm substantial benefits can be achieved in terms of computational time without sacrificing solution quality.

  • PDF

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

Enhanced Extraction of Traversable Region by Combining Scene Clustering with 3D World Modeling based on CCD/IR Image (CCD/IR 영상 기반의 3D 월드모델링과 클러스터링의 통합을 통한 주행영역 추출 성능 개선)

  • Kim, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2008
  • Accurate extraction of traversable region is a critical issue for autonomous navigation of unmanned ground vehicle(UGV). This paper introduces enhanced extraction of traversable region by combining scene clustering with 3D world modeling using CCD(Charge-Coupled Device)/IR(Infra Red) image. Scene clustering is developed with K-means algorithm based on CCD and IR image. 3D world modeling is developed by fusing CCD and IR stereo image. Enhanced extraction of traversable regions is obtained by combining feature of extraction with a clustering method and a geometric characteristic of terrain derived by 3D world modeling.

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.

The Reduction Methodology of External Noise with Segmentalized PSO-FCM: Its Application to Phased Conversion of the Radar System on Board (축별 분할된 PSO-FCM을 이용한 외란 감소방안: 함정용 레이더의 위상변화 적용)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.638-643
    • /
    • 2012
  • This paper presents an intelligent reduction method for external noise. The main idea comes from PSO-FCM (Particle Swam Optimization Fused fuzzy C-Means) clustering. The data of the target is transformed from the antenna coordinates to the vessel one and to the system coordinates. In the conversion, the overall noises hinder observer to get the exact position and velocity of the maneuvering target. While the filter is used for tracking system, unexpected acceleration becomes the main factor which makes the uncertainty. In this paper, the tracking efficiency is improved with the PSO-FCM and the compensation methodology. The acceleration is approximated from the external noise splitted by the proposed clustering method. After extracting the approximated acceleration, the rest in the noise is filtered by the filter and the compensation is added to after that. Proposed tracking method is applicable to the linear model and nonlinear one together. Also, it can do to the on-line system. Finally, some examples are provided to examine the reliability of the proposed method.

Sales Forecasting Model for Apparel Products Using Machine Learning Technique - A Case Study on Forecasting Outerwear Items - (머신 러닝을 활용한 의류제품의 판매량 예측 모델 - 아우터웨어 품목을 중심으로 -)

  • Chae, Jin Mie;Kim, Eun Hie
    • Fashion & Textile Research Journal
    • /
    • v.23 no.4
    • /
    • pp.480-490
    • /
    • 2021
  • Sales forecasting is crucial for many retail operations. For apparel retailers, accurate sales forecast for the next season is critical to properly manage inventory and plan their supply chains. The challenge in this increases because apparel products are always new for the next season, have numerous variations, short life cycles, long lead times, and seasonal trends. In this study, a sales forecasting model is proposed for apparel products using machine learning techniques. The sales data pertaining to outerwear items for four years were collected from a Korean sports brand and filtered with outliers. Subsequently, the data were standardized by removing the effects of exogenous variables. The sales patterns of outerwear items were clustered by applying K-means clustering, and outerwear attributes associated with the specific sales-pattern type were determined by using a decision tree classifier. Six types of sales pattern clusters were derived and classified using a hybrid model of clustering and decision tree algorithm, and finally, the relationship between outerwear attributes and sales patterns was revealed. Each sales pattern can be used to predict stock-keeping-unit-level sales based on item attributes.

Analysis of News Articles on Child Welfare Policies in South Korea: K-Means Clustering (대한민국 정권별 아동복지정책 관련 뉴스 기사 분석: K-평균 군집 분석)

  • Kim, Eun Joo;Kim, Seong Kwang;Park, Bit Na
    • Journal of East-West Nursing Research
    • /
    • v.29 no.2
    • /
    • pp.185-195
    • /
    • 2023
  • Purpose: The purpose of this study is to analyze changes of child welfare policies and provide insights based on the collection and classification of newspaper articles. Methods: Articles related to child welfare policies were collected from 1990, during the Kim, Young-sam administration, to May 9, 2022, under the Moon, Jae-in administration. K-Means clustering and keyword Term Frequency-Inverse Document Frequency analysis were utilized to cluster and analyze newspaper articles with similar themes. Results: The administrations of Kim, Young-sam, Kim, Dae-jung, Roh, Moo-hyun, and Park, Geun-hye were classified into two clusters, and the Lee, Myung-bak and Moon, Jae-in administrations were classified into three clusters. Conclusion: South Korea's child welfare policies have focused on ensuring the safety and healthy development of children through diverse policies initiatives over the years. However, challenges related to child protection and child abuse persist. This requires additional resources and budget allocation. It is important to establish a comprehensive support system for children and families, including comprehensive nursing support.

Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method (PFCM 클러스터링 기법의 개선)

  • Heo, Gyeong-Yong;Choe, Se-Woon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.177-185
    • /
    • 2009
  • Cluster analysis or clustering is a kind of unsupervised learning method in which a set of data points is divided into a given number of homogeneous groups. Fuzzy clustering method, one of the most popular clustering method, allows a point to belong to all the clusters with different degrees, so produces more intuitive and natural clusters than hard clustering method does. Even more some of fuzzy clustering variants have noise-immunity. In this paper, we improved the Possibilistic Fuzzy C-Means (PFCM), which generates a membership matrix as well as a typicality matrix, using Gath-Geva (GG) method. The proposed method has a focus on the boundaries of clusters, which is different from most of the other methods having a focus on the centers of clusters. The generated membership values are suitable for the classification-type applications. As the typicality values generated from the algorithm have a similar distribution with the values of density function of Gaussian distribution, it is useful for Gaussian-type density estimation. Even more GG method can handle the clusters having different numbers of data points, which the other well-known method by Gustafson and Kessel can not. All of these points are obvious in the experimental results.

Detection of Cold Water Mass along the East Coast of Korea Using Satellite Sea Surface Temperature Products (인공위성 해수면온도 자료를 이용한 동해 연안 냉수대 탐지 알고리즘 개발)

  • Won-Jun Choi;Chan-Su Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1235-1243
    • /
    • 2023
  • This study proposes the detection algorithm for the cold water mass (CWM) along the eastern coast of the Korean Peninsula using sea surface temperature (SST) data provided by the Korea Institute of Ocean Science and Technology (KIOST). Considering the occurrence and distribution of the CWM, the eastern coast of the Korean Peninsula is classified into 3 regions("Goseong-Uljin", "Samcheok-Guryongpo", "Pohang-Gijang"), and the K-means clustering is first applied to SST field of each region. Three groups, K-means clusters are used to determine CWM through applying a double threshold filter predetermined using the standard deviation and the difference of average SST for the 3 groups. The estimated sea area is judged by the CWM if the standard deviation in the sea area is 0.6℃ or higher and the average water temperature difference is 2℃ or higher. As a result of the CWM detection in 2022, the number of CWM occurrences in "Pohang-Gijang" was the most frequent on 77 days and performance indicators of the confusion matrix were calculated for quantitative evaluation. The accuracy of the three regions was 0.83 or higher, and the F1 score recorded a maximum of 0.95 in "Pohang-Gijang". The detection algorithm proposed in this study has been applied to the KIOST SST system providing a CWM map by email.