• Title/Summary/Keyword: K ion

Search Result 10,760, Processing Time 0.04 seconds

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

Transmission Electron Microscope Specimen Preparation of Si-Based Anode Materials for Li-Ion Battery by Using Focused Ion Beam and Ultramicrotome

  • Chae, Jeong Eun;Yang, Jun Mo;Kim, Sung Soo;Park, Ju Cheol
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • A successful transmission electron microscope (TEM) analysis is closely related to the preparation of the TEM specimen and should be followed by the suitable TEM specimen preparation depending on the purpose of analysis and the subject materials. In the case of the Si-based anode material, lithium atoms of formed Li silicide were removed due to ion beam and electron beam during TEM specimen preparation and TEM observation. To overcome the problem, we proposed a new technique to make a TEM specimen without the ion beam damage. In this study, two types of test specimens from the Si-based anode material of Li-ion battery were prepared by respectively adopting the only focused ion beam (FIB) method and the new FIB-ultramicrotome method. TEM analyses of two samples were conducted to compare the Ga ion damage of the test specimen.

Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments

  • Zuo, Xiao-Bao;Sun, Wei;Li, Hua;Zhao, Yu-Kui
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2012
  • This paper estimates theoretically the diffusion-reaction behaviour of sulfate ion in concrete caused by environmental sulfate attack. Based on Fick's second law and chemical reaction kinetics, a nonlinear and nonsteady diffusion-reaction equation of sulfate ion in concrete, in which the variable diffusion coefficient and the chemical reactions depleting sulfate ion concentration in concrete are considered, is proposed. The finite difference method is utilized to solve the diffusion-reaction equation of sulfate ion in concrete, and then it is used to simulate the diffusion-reaction process and the concentration distribution of sulfate ion in concrete. Afterwards, the experiments for measuring the sulfate ion concentration in concrete are carried out by using EDTA method to verify the proposal model, and results show that the proposed model is basically in agreement with the experimental results. Finally, Numerical example has been completed to investigate the diffusion-reaction behavior of sulfate ion in the concrete plate specimen immersed into sulfate solution.

Development of Ion-Selective Electrodes for Agriculture

  • Yang-Rae Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.153-153
    • /
    • 2022
  • There is a growing need to develop ion sensors for agriculture. As a result, several technologies have been developed, such as colorimetry, spectrophotometry, and ion-selective electrode (ISE). Among them, ISE has some advantages compared to others. First, it does not require pre-treatment processes and expensive equipment. Second, it is possible for the portable detection system by introducing small-sized electrodes. Finally, real-time and multiple detections of several ions are pursued. It is well-known that N, P, and K nutrients are critical for crop growth. With the development of agriculture techniques, the importance of soil nutrient analysis has attracted much attention for cost-effective and eco-friendly agriculture. Among several issues, minimizing the use of fertilizers is significant through quantitative analysis of soil nutrients. As a result, it is highly important to analyze certain nutrients, such as N (ammonium ion, nitrate ion, nitrite ion), P (dihydrogen phosphate ion, monohydrogen phosphate ion), and K (potassium ion). Therefore, developing sensors for accurate analysis of soil nutrients is highly desired. n this study, several ISEs have been fabricated to detect N, P, and K. Their performance has been intensively studied, such as sensitivity, selectivity coefficient, and concentration range, and compared with commercialized ISEs. In addition, preliminary tests on the in-situ N, P, and K monitoring have been conducted inside the soil.

  • PDF

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis

  • Shon, Hyun Kyong;Son, Jin Gyeong;Lee, Kyung-Bok;Kim, Jinmo;Kim, Myung Soo;Choi, Insung S.;Lee, Tae Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.815-819
    • /
    • 2013
  • Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.

Study on ZnO Thin Film Irradiated by Ion Beam as an Alignment Layer (배향막 응용을 위한 이온 빔 조사된 ZnO 박막에 관한 연구)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Jong-Yeon;Kim, Young-Hwan;Kim, Jong-Hwan;Han, Jeong-Min;Ok, Chul-Ho;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.430-430
    • /
    • 2007
  • In this study, the nematic liquid crystal (NLC) alignment effects treated on the ZnO thin film layers using ion beam irradiation were successfully studied for the first time. The ZnO thin films were deposited on indium-tin-oxide (ITO) coated glass substrates by rf-sputter and The ZnO thin films were deposited at the three kinds of rf power. The used DuoPIGatron type ion beam system, which can be advantageous in a large area with high density plasma generation. The ion beam parameters were as follows: energy of 1800 eV, exposure time of 1 min and ion beam current of $4\;mA/cm^2$ at exposure angles of $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The homogeneous and homeotropic LC aligning capabilities treated on the ZnO thin film surface with ion beam exposure of $45^{\circ}$ for 1 min can be achieved. The low pretilt angle for a NLC treated on the ZnO thin film surface with ion beam irradiation for all incident angles was measured. The good LC alignment treated on the ZnO thin film with ion beam exposure at rf power of 150 W can be measure. For identifying surfaces topography of the ZnO thin films, atomic force microscopy (AFM) was introduced. After ion beam irradiation, test samples were fabricated in an anti-parallel configuration with a cell gap of $60{\mu}m$.

  • PDF

Low temperature pulsed ion shower doping for poly-Si TFT on plastic

  • Kim, Jong-Man;Hong, Wan-Shick;Kim, Do-Young;Jung, Ji-Sim;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.95-97
    • /
    • 2004
  • We studied a low temperature ion doping process for poly-Si Thin Film Transistor (TFT) on plastic substrates. The ion doping process was performed using an ion shower system, and subsequently, excimer laser annealing (ELA) was done for the activation. We have studied the crystallinity of Si surface at each step using UV-reflectance spectroscopy and the sheet resistance using 4-point probe. We found that the temperature has increased during ion shower doping for a-Si film and the activation has not been fulfilled stably because of the thermal damage against the plastic substrate. By trying newly a pulsed ion shower doping, the ion was efficiently incorporated into the a-Si film on plastic substrate. The sheet resistance decreased with the increase of the pulsed doping time, which was corresponded to the incorporated dose. Also we confirmed a relationship between the crystallinity and the sheet resistance. A sheet resistance of 300 ${\Omega}$/sq for the Si film of 50nm thickness was obtained with a good reproducibility. The ion shower technique is a promising doping technique for ultra low temperature poly-Si TFTs on plastic substrates as well as those on glass substrates.

  • PDF

Breeding of L(+)-Lactic Acid Producing Strain by Low-Energy Ion Implantation

  • Ge, Chun-Mei;Gu, Shao-Bin;Zhou, Xiu-Hong;Yao, Jian-Ming;Pan, Ren-Rui;Yu, Zeng-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.363-366
    • /
    • 2004
  • In order to obtain an industrial strain with higher L(+)-lactic acid yield, the wild type strain Rhizopus oryzae PW352 was mutated by means of Nitrogen ions implantation (l5 Kev, $7.8 \times 10^{14} - 2.08 \times 10^{15} ions/Cm^2$ and two mutants RE3303 and RF9052 were isolated. After 36 h shake-flask cultivation, the concentration of L(+)-lactic acid reached 131-136 g/l, the conversion rate of glucose was as high as 86%-90% and the productivity was 3.61 g/l.h. It was almost a 75% increase in lactic acid production compared with the wild type strain. Maximum fermentation temperature of RF9052 was increased to $45^{\circ}C$ from original $36^{\circ}C$. At the same time, the preferred range of fermentation temperature of RF9052 was broadened compared with PW352.

Emittance Measurements of the Ion Sources for Induction Linac Driven Heavy Ion Fusion

  • Lee, Heon-Ju
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 1997
  • The ion sources for induction linac driven heavy ion fusion were fabricated and their omittance characteristics were investigated. For to kinds of ion sources, i. e. a carbon vacuum arc ion source and a cusp field rf ion source, the emittance was measured with a double slit beam scanner. The required normalized omittance of an ion source for heavy ion fusion is 10$^{-7}$ - 5$\times$10$^{-7}$ $\pi$ m-rod, and the measured emittances of the ion beams from carbon vacuum arc ion source and cusp field rf ion source (Ne$^{+}$) were 2$\times$10$^{-6}$ $\pi$ m-rad and 4$\times$10$^{-7}$ $\pi$ m-rad, respectively.y.

  • PDF

Vertical Alignment of Liquid Crystal by Ion Beam Irradiation (이온빔 배향에 의한 수직 배향막의 액정 배향)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Young-Hwan;Ok, Chul-Ho;Han, Jeong-Min;Kim, Jong-Hwan;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.414-414
    • /
    • 2007
  • In this study, Liquid Crystal (LC) alignment and tilt angle generation in Nematic Liquid Crystal (NLC) with negative dielectric anisotropy on the homeotropic PI surface with new ion beam exposure are reported. Also. high density of ion beam energy (DuoPIGatron type Ar ion gun) is used in this study. The tilt angle of NLC on the homeotropic Polyimide (PI) surface for all incident angles is measured about 38 degree and this has a stabilization trend. And the good LC alignment of NLC on the PI surface with ion beam exposure of $45^{\circ}$ incident angle was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of $45^{\circ}$ had a tendency to decrease as ion beam energy density increase. The tilt angle could be controlled from verticality to horizontality. Also, the LC aligning capabilities of NLC on the homeotropic PI surface according to ion beam energy has the goodness in case of more than 1500 eV. Finally. the superior LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved. For OCB(Optically Compensated Bend) mode driving, we can need pretilt angles control for fast response time. In this study, We success pretilt angles control. Consequently, this result can be applied for OCB mode.

  • PDF