• Title/Summary/Keyword: K -means clustering method

Search Result 560, Processing Time 0.024 seconds

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis (일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구)

  • Park, Byung Eun;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.19-36
    • /
    • 2015
  • Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.

Interpretation of Soil Catena for Agricultural Soils derived from Sedimentary Rocks (퇴적암 유래 농경지 토양에 대한 카테나 해석)

  • SONN, Yeon-Kyu;LEE, Dong-Sung;KIM, Keun-Tae;HYUN, Byung-Keun;JUN, Hye-Weon;JEON, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.1-14
    • /
    • 2017
  • In Korea, the soil series derived from sedimentary rocks are classified into seven soil series of coarse loamy soil such as Dain, Danbug, Dongam, Imdong, Jeomgog, Maryeong, and Yonggog; seventeen soil series of fine loamy soil such as Angye, Anmi, Banho, Bigog, Deoggog, Dogye, Dojeon, Gamgog, Gugog, Jincheon, Maji, Mungyeong, Oggye, Samam, Yanggog, Yeongwol, and Yulgog; six soil series of fine silty soil such as Goryeong, Bonggog, Juggog, Gyeongsan, Yuga, and Yugog; and four soil series of clayey soil such as Mitan, Pyeongan, Pyeongjeon, and Uji. All thirty-four soil series have different drainage rates and topography. However, the soil texture depends on the parent rock. The buffer functions in GIS (Geographic Information System) techniques were used to calculate adjacent soil series from a soil series. The length of the adjacent soil series was adjusted because a side of the buffer area was one meter long. The cluster analysis was conducted using the CCC (Cubic Clustering Criterion) method, in which the number of clusters is calculated based on the individual soil series ratio. Soil survey has been carried out since 1964 as "The reconnaissance soil survey", and 1:5,000 detailed soil survey was completed in 1999 with a five-years plan in Korea. Today, all the soil survey information has been computerized. GIS techniques were used to establish a digital soil map; however, there have not been any studies to interpret pedogenesis using the GIS technique. In this study, the area of the adjacent soil series were obtained using the GIS technique. The area of the adjacent soil series can be calculated based on the information area. The similarities of soil originated from sedimentary rocks were estimated using the length. As a result, the distribution of grain size was different based on the types of sedimentary rocks and the location. The clusters were distinguished into limestone, sandstone, and shale. In addition, the soil derived from shale was divided into red shale and gray shale. This means that quantitative interpretation of the catena and this established method can be used to interpret the relationship between soil series.

Analysis of dimensions and shapes of maxillary and mandibular dental arch in Korean young adults

  • Park, Su-Jung;Leesungbok, Richard;Song, Jae-Won;Chang, Se Hun;Lee, Suk-Won;Ahn, Su-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.321-327
    • /
    • 2017
  • PURPOSE. The aim of this study was to investigate dental arch dimensions and to classify arch shape in Korean young adults. MATERIALS AND METHODS. The sample included 50 Koreans with age ranging from 24 to 32 years. Maxillary and mandibular casts were fabricated using irreversible hydrocolloid and type III dental stones. Incisor-canine distance, $incisor-1^{st}$ molar distance, $incisor-2^{nd}$ molar distance, intercanine distance, $inter-1^{st}$ molar distance, and $inter-2^{nd}$ molar distance in both the maxillary and mandibular arch were measured using a three-dimensional measuring device. The dental arch was classified into three groups using five ratios from the measured values by the K-means clustering method. The data were analyzed with one-way analysis of variance. RESULTS. Arch lengths (IM2D, $incisal-2^{nd}$ molar distance) were 44.13 mm in the maxilla and 40.40 mm in the mandible. Arch widths (M2W, inter $2^{nd}$ molar width) were 64.12 mm in the maxilla and 56.37 mm in the mandible. Distribution of the dental arch form was mostly ovoid shape (maxilla 52% and mandible 56%), followed by the V-shape and the U-shape. The arch width for the U-shape was broader than for the other forms. CONCLUSION. This study establishes new reference data for dental arch dimensions for young Korean adults. The most common arch form is the ovoid type in the maxilla and mandible of Koreans. Clinicians should be aware of these references and classify arch type before and during their dental treatment for effective and harmonized results in Koreans.

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

Identification of Employee Experience Factors and Their Influence on Job Satisfaction (직원경험 요인 파악 및 직무 만족도에 끼치는 영향력 분석)

  • Juhyeon Lee;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.181-203
    • /
    • 2023
  • With the fierce competition of companies for the attraction of outstanding individuals, job satisfaction of employees has been of importance. In this circumstance, many companies try to invest in job satisfaction improvement by finding employees' everyday experiences and difficulties. However, due to a lack of understanding of the employee experience, their investments are not paying off. This study examined the relationship between employee experience and job satisfaction using employee reviews and company ratings from Glassdoor, one of the largest employee communities worldwide. We use text mining techniques such as K-means clustering and LDA topic-based sentiment analysis to extract key experience factors by job level, and DistilBERT sentiment analysis to measure the sentiment score of each employee experience factor. The drawn employee experience factors and each sentiment score were analyzed quantitatively, and thereby relations between each employee experience factor and job satisfaction were analyzed. As a result, this study found that there is a significant difference between the workplace experiences of managers and general employees. In addition, employee experiences that affect job satisfaction also differed between positions, such as customer relationship and autonomy, which did not affect the satisfaction of managers. This study used text mining and quantitative modeling method based on theory of work adjustment so as to find and verify main factors of employee experience, and thus expanded research literature. In addition, the results of this study are applicable to the personnel management strategy for improving employees' job satisfaction, and are expected to improve corporate productivity ultimately.

Analysis of Utilization Characteristics, Health Behaviors and Health Management Level of Participants in Private Health Examination in a General Hospital (일개 종합병원의 민간 건강검진 수검자의 검진이용 특성, 건강행태 및 건강관리 수준 분석)

  • Kim, Yoo-Mi;Park, Jong-Ho;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.301-311
    • /
    • 2013
  • This study aims to analyze characteristics, health behaviors and health management level related to private health examination recipients in one general hospital. To achieve this, we analyzed 150,501 cases of private health examination data for 11 years from 2001 to 2011 for 20,696 participants in 2011 in a Dae-Jeon general hospital health examination center. The cluster analysis for classify private health examination group is used z-score standardization of K-means clustering method. The logistic regression analysis, decision tree and neural network analysis are used to periodic/non-periodic private health examination classification model. 1,000 people were selected as a customer management business group that has high probability to be non-periodic private health examination patients in new private health examination. According to results of this study, private health examination group was categorized by new, periodic and non-periodic group. New participants in private health examination were more 30~39 years old person than other age groups and more patients suspected of having renal disease. Periodic participants in private health examination were more male participants and more patients suspected of having hyperlipidemia. Non-periodic participants in private health examination were more smoking and sitting person and more patients suspected of having anemia and diabetes mellitus. As a result of decision tree, variables related to non-periodic participants in private health examination were sex, age, residence, exercise, anemia, hyperlipidemia, diabetes mellitus, obesity and liver disease. In particular, 71.4% of non-periodic participants were female, non-anemic, non-exercise, and suspicious obesity person. To operation of customized customer management business for private health examination will contribute to efficiency in health examination center.

Determination of Tumor Boundaries on CT Images Using Unsupervised Clustering Algorithm (비교사적 군집화 알고리즘을 이용한 전산화 단층영상의 병소부위 결정에 관한 연구)

  • Lee, Kyung-Hoo;Ji, Young-Hoon;Lee, Dong-Han;Yoo, Seoung-Yul;Cho, Chul-Koo;Kim, Mi-Sook;Yoo, Hyung-Jun;Kwon, Soo-Il;Chun, Jun-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • It is a hot issue to determine the spatial location and shape of tumor boundary in fractionated stereotactic radiotherapy (FSRT). We could get consecutive transaxial plane images from the phantom (paraffin) and 4 patients with brain tumor using helical computed tomography(HCT). K-means classification algorithm was adjusted to change raw data pixel value in CT images into classified average pixel value. The classified images consists of 5 regions that ate tumor region (TR), normal region (NR), combination region (CR), uncommitted region (UR) and artifact region (AR). The major concern was how to separate the normal region from tumor region in the combination area. Relative average deviation analysis was adjusted to alter average pixel values of 5 regions into 2 regions of normal and tumor region to define maximum point among average deviation pixel values. And then we drawn gross tumor volume (GTV) boundary by connecting maximum points in images using semi-automatic contour method by IDL(Interactive Data Language) program. The error limit of the ROI boundary in homogeneous phantom is estimated within ${\pm}1%$. In case of 4 patients, we could confirm that the tumor lesions described by physician and the lesions described automatically by the K-mean classification algorithm and relative average deviation analyses were similar. These methods can make uncertain boundary between normal and tumor region into clear boundary. Therefore it will be useful in the CT images-based treatment planning especially to use above procedure apply prescribed method when CT images intermittently fail to visualize tumor volume comparing to MRI images.

  • PDF

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System (법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론)

  • Kim, Ji Hyun;Lee, Jong-Seo;Lee, Myungjin;Kim, Wooju;Hong, June Seok
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.137-152
    • /
    • 2012
  • In the generation of Web 2.0, as many users start to make lots of web contents called user created contents by themselves, the World Wide Web is overflowing by countless information. Therefore, it becomes the key to find out meaningful information among lots of resources. Nowadays, the information retrieval is the most important thing throughout the whole field and several types of search services are developed and widely used in various fields to retrieve information that user really wants. Especially, the legal information search is one of the indispensable services in order to provide people with their convenience through searching the law necessary to their present situation as a channel getting knowledge about it. The Office of Legislation in Korea provides the Korean Law Information portal service to search the law information such as legislation, administrative rule, and judicial precedent from 2009, so people can conveniently find information related to the law. However, this service has limitation because the recent technology for search engine basically returns documents depending on whether the query is included in it or not as a search result. Therefore, it is really difficult to retrieve information related the law for general users who are not familiar with legal terms in the search engine using simple matching of keywords in spite of those kinds of efforts of the Office of Legislation in Korea, because there is a huge divergence between everyday words and legal terms which are especially from Chinese words. Generally, people try to access the law information using everyday words, so they have a difficulty to get the result that they exactly want. In this paper, we propose a term mapping methodology between everyday words and legal terms for general users who don't have sufficient background about legal terms, and we develop a search service that can provide the search results of law information from everyday words. This will be able to search the law information accurately without the knowledge of legal terminology. In other words, our research goal is to make a law information search system that general users are able to retrieval the law information with everyday words. First, this paper takes advantage of tags of internet blogs using the concept for collective intelligence to find out the term mapping relationship between everyday words and legal terms. In order to achieve our goal, we collect tags related to an everyday word from web blog posts. Generally, people add a non-hierarchical keyword or term like a synonym, especially called tag, in order to describe, classify, and manage their posts when they make any post in the internet blog. Second, the collected tags are clustered through the cluster analysis method, K-means. Then, we find a mapping relationship between an everyday word and a legal term using our estimation measure to select the fittest one that can match with an everyday word. Selected legal terms are given the definite relationship, and the relations between everyday words and legal terms are described using SKOS that is an ontology to describe the knowledge related to thesauri, classification schemes, taxonomies, and subject-heading. Thus, based on proposed mapping and searching methodologies, our legal information search system finds out a legal term mapped with user query and retrieves law information using a matched legal term, if users try to retrieve law information using an everyday word. Therefore, from our research, users can get exact results even if they do not have the knowledge related to legal terms. As a result of our research, we expect that general users who don't have professional legal background can conveniently and efficiently retrieve the legal information using everyday words.

A Study on the Consumer's Service Quality Perception Based on the Types of Life-style (소비자의 라이프스타일에 따른 서비스품질 지각 차이에 관한 연구)

  • Park, Yoon-Seo;Lee, Seung-In;Choi, In
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.2
    • /
    • pp.53-67
    • /
    • 2009
  • For the last decades, service quality has been studied as one of the most important tools for a service company to compete with the other companies. Based on these past researches, it has been agreed that the service quality is a basic and powerful tool to create the competitive advantage. Due to similar reason, many service marketing practitioners have been also focused on the service quality to retain the existing consumers and collect the new consumers. However, service quality is subjectively perceived by individual consumers. Consumer evaluation of service quality can be different from each other. Especially consumers with one life-style may evaluate the service quality differently from the consumers with the other life-styles. Therefore we need to know whether there are differences in service quality perception on the categories of life-style. Life-style refers to a distinctive mode of living in its aggregate and broadest sense. It embodies the patterns that were developed and emerged from the dynamics of living in a society. Since the concept of life-style and its relationship to marketing was introduced in 1963 by William Lazer, methods of measuring the life-style and their application have been developed. Life-style has been usually used to segment the marketplace because it offers marketers a unique and important view of the market. When Life-style is combined with clustering methods, life-style segmentation can generate identifiable whole persons rather than isolated fragment. Life-style segmentation begins with people instead of products and classifies them into different life-style types, each characterized by a unique style of living based on a wide range of activities, interests, and opinions(Plummer, 1974). In this study we applies the life-style segmentation based on the AIO(Activities, Interests, and Opinions) to the consumers of the large discount stores. In Korea, the large discount store market has entered into maturity stage so that the market differentiation strategy is becoming a more critical issue to the marketing practitioners. One of the most important tools to differentiate from the competitors in large discount store market is continuously to provide service of better quality than competitors. This study tries to find answers about the following questions: 1) How can we categorize the consumer life-styles in the large discount store? 2) What are the characteristics of the categorized groups? 3) Are there any differences in service quality perception among the consumers with different life-styles 4) Are there any differences in consumer behavior among them in the large discount store? For the purpose, we collected survey data from consumers and analyzed the data with the SPSS package where we had $X^2$-test, factor analysis, ANOVA, MANOVA, and cluster analysis. The survey was made during one month in the April of 2008. Among the collected 306 copies of questionnaires, 281 copies were chosen as the effective samples for empirical analysis except 25 copies with wrong responses. To identify the life-style patterns, we used the measures employed by Kim and Kwon(1999), where 44 items on a seven-point scale were used to measure factors of the life-style patterns. The Principal Component Method was used for factor extraction, and the VARIMAX orthogonal factor rotation was employed. The 7 items showing low factor loading were eliminated. The results of the factor analysis suggested that nine factors of the life-style patterns were identified as follows: 1) the equality-of-sexes and pursuit-of-independence tendency 2) self-management tendency 3) sociable tendency 4) self-display tendency 5) degree of a dilettante life 6) pursuit-of-information tendency 7) bargain hunter tendency 8) TV preference tendency 9) pursuit-of-leisure tendency. Next, after the K-means cluster analysis was performed with nine factors of the life-style patterns, the life-styles of the respondents were classified into four groups which are named as the 'progressive practicality-oriented group', 'positive success-oriented group', 'sociable ostentation-oriented group', 'stable conservation-oriented group'. The analysis results for usage behavior between the market segments showed statistically significant differences in the frequency of usage, duration time in the store, consumer satisfaction, and loyalty. Also, we tried to investigate whether the large discount store consumers differently perceive the quality of service based upon the types of life-style. To measure the service quality of large discount store, we adapted several measurement models measuring the service quality such as SERVPERF, BCP, R-SERVPERF, R-BCP. MANOVA and One-Way ANOVA were performed to confirm the difference in service quality perception based on the market segments. The results have also shown significant differences between life-style types in service quality perception. These findings show that the large discount store marketers should consider consumer life-style as one of the most important market segments for marketing and understand the difference in service quality perception between life-style types. Our findings give important implications to marketers of large discount stores as well as life-style researchers. First, this study showed there were significant differences in consumer's service quality perception and usage behavior between the types of life-style. It provides evidence that the life-style approach can be a important basis in segmenting the large discount store market and will make consumers perceive the service quality high. Second, most previous researches on service quality have been in aggregate level. However, our results imply that the future research on service quality have to focus on segment level.

  • PDF