본 논문에서는 "middle-down" 접근법에 기반한 기존의 표준 셀 배치기인 하이브리드 배치기$^{[25]}$의 단점을 보완한 효율적인 광역배치 알고리즘을 제안한다. hMETIS(클러스터링을 이용한 다단계 하이퍼그래프 분할기법)에 사용된 기법과 RBLS(Relaxation Based Local Search) 기법의 적절한 조합을 통해 기존 하이브리드 배치기의 광역배치 기능을 향상시킨다. hMETIS를 통한 분할기법을 "top-down" 방식으로 적용하고, 각 단계에서 RBLS를 사용하여 광역배치를 점진적으로 개선해 나가는 제안된 기법은 초기 배치에 크게 영향을 받는 기존 방법의 문제점을 해결하고, 실행 속도를 개선하면서도 배치의 질을 떨어뜨리지 않는 효과적인 기법이다. 제안한 알고리즘을 통해 구현된 개선된 배치기는 기존의 하이브리드 배치기나 FengShui와 같은 우수한 툴과 비교할 때 뒤지지 않는 성능을 보인다. 특별히 기존의 하이브리드 배치기에 비해 실행 속도 면에서 평균 5배 정도의 개선을 보였고, 큰 회로에 대해선 배선길이도 줄어드는 향상된 결과를 보였다.
영상센서 기반의 충돌회피 시스템을 구성하기 위해서는 수 픽셀 이내의 낮은 신호대잡음비 환경에서 다수의 표적을 탐지할 수 있는 알고리듬이 필요하다. 이처럼 영상 내에서 희미하게 나타나는 잠재적인 표적과 잡음을 구분하기 위한 방법으로서 연속적인 영상 정보를 효율적으로 처리하는 Track-Before-Detect (TBD) 알고리듬이 연구되고 있다. 본 논문에서는 기존의 TBD 알고리듬을 확장하여 다수 표적 탐지 요구조건을 만족시키기 위한 두 가지 방식의 기법을 제시하였다. 첫 번째 방식은 동적 계획법과 K-평균 클러스터링 기법에 기반을 두고 있으며 두 번째 방식은 은닉 마르코프 모델에 Sub-Window 기법을 적용하였다. 제안한 방식의 성능 및 차이점은 수치해석 결과를 통해 분석하였다.
1969년에 처음 고안되어 확산에 대한 마케팅 연구를 이끈 Bass Diffusion Model은 일반적으로 마케팅 연구 및 경영 과학에서 가장 성공적인 모델 중 하나다. 본 연구는 휴대전화 가입 확산을 토대로 Bass 확산 모델의 사용을 설명하며 Bass 확산 모델을 3대 선진국 시장인 한국, 일본, 중국과 신흥시장인 베트남, 태국, 카자흐스탄, 몽골에 적용했다. 실험에서는 비선형 최소자승법을 사용하여 Bass확산 모델의 매개변수를 추정하였고 휴대전화 가입의 확산은 모든 경우에 S 곡선을 따른다. m, p 및 q 매개변수를 획득한 후 국가를 세 그룹으로 그룹화하기 위해 k-평균 클러스터 분석을 사용했으며 국가를 클러스터링함으로써 확산 속도와 패턴이 유사하며 신흥시장이 있는 국가가 선진국의 발자취를 따를 수 있음을 제안한다. 연구의 목적은 시장 성숙도의 시기와 규모를 예측하고 데이터가 Bass 모델의 혁신의 일반적인 확산 곡선을 따르는지 여부를 판단하는 것이다.
카드소팅(Card sorting)은 항목 간의 관계에 대한 사용자의 인식을 이해하는 데 유용한 데이터 수집 방법으로서, 일반적으로 카드소팅은 사용자 조사 및 평가에 매우 유용한 직관적이고 비용 효율적인 기술이다. 본 연구에서는 각 분야 직업별 핵심역량들은 코스 개발을 위하여 다음 단계인 카드소팅 단계에서 활용되는 역량카드로 사용하고, 결과를 군집화 하기 위해 K-평균 알고리즘을 적용하여 군집화 결과를 도출하였다. 카드소팅 결과 각 분야 직업별 핵심역량들에 대한 역량 군집화는 Participant-Centric Analysis (PCA)를 바탕으로 검증하였고, 이를 바탕으로 역량에 따른 직업별 코스 및 역량 분류 결과와 클러스터링에 의한 카드 유사성 정도는 각 직업별 핵심 역량 카드수에 대해 소팅 참여자 수 대비 군집화에 적합하게 동의한 참여자의 수와 카드 유사성 정도를 도출하였다.
Truong, Hai Thi Hong;Graham, Elaine;Esch, Elisabeth;Wang, Jaw-Fen;Hanson, Peter
원예과학기술지
/
제28권4호
/
pp.664-671
/
2010
토마토풋마름병에 저항성인 $Solanum$$lycopersicum$ H7996와 극도감수성인 $S.$$pimpinellifolium$ WVa700 간의 교배를 통해 획득한 재조합순계계통 $F_9$ 세대의 188개체를 이용하여 유전자연관지도를 작성하였다. 유전자지도는 DarT 260종, AFLP 74종, RFLP 4종, SNP 1종 및 SSR 22종 등 총 361종의 마커로 구성되었다. 작성된 유전자지도는 총 13개의 연관군(LG)에 2042.7cM을 포함하였으며 마커간의 평균지도거리는 5.7cM이고 이중 DArT마커는 평균 7.9cM당 1개가 분포하였다. SSR 마커의 분포를 기초로 작성된 11개 연관군들은 토마토 염색체의5번과 12번을 제외한 10개 염색체에 해당하였다. DArT 마커는 다른 마커들처럼 토마토 유전체 상에 고르게 분포하였으며, 인접 마커와의 상호분석(${\leq}$ 0.5cM) 결과 클러스터링 빈도가 13.5%인 AFLP 마커보다 3배 정도 높은 38.8%의 빈도로 최고치를 나타내었다. 본 연구를 통해 토마토에서 최초로 DarT 마커를 이용한 유전자연관지도를 작성하였다.
수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.
본 연구에서는 역전파(backpropagationlk)학습 알고리즘에 대체될 수 있는 전방향 학습 알고리즘에 준하는 혼합 인식모형을 구성한다. 본 알고리즘은 Nikhil R. Pal (1993)이 제안한 GLVQ(Generalized Learning Vector Quantization)를 이용하여 패턴을 클러스터링 한 다음 비유사성(dissimilarity)을 가진 패턴끼리 재구성(regrouping) 하여 단순 퍼셉트론(simple perceptron)을 이용하여 group별 학습을 한다. 일반적으로 역전파학습인 학습시간이 많이 소요된다는 단점이 있다[1]. 본 알고리즘의 특징으로 는 feed-forward학습이기 때문에 학습시간이 단축될 뿐만 아니라 전체 패턴을 그룹별 로 나누어 학습을 하기 때문에 인식률도 향상 시킬 수 있다. 본 알고리즘에 적용한 데 이타는 250개의 ASCII코드를 16$\times$8격자에 정규화시킨 비트 패턴(bit pattern)을 이용 하였다. 실험결과 250개의 패턴을 10개의 클러스터로 나누어 학습을 시켰을 때 각 클 러스터별 평균반복횟수 94.7회만에 250개의 ASCII코드를 100% 인식할 수 있었다.
본 논문에서는 이중 마이크로폰 배열을 이용하여 비음수 행렬분해(nonnegative matrix factorization, NMF) 기반으로 다중음원의 도래각을 추정하는 새로운 방법을 제안한다. 우선 이중 마이크로폰 배열에 들어온 음향 신호들을 연속된 분석프레임으로 분할한 후, 각 프레임에 대해 조향응답파워 위상변환(steered-response power phase transform, SRP-PHAT) 빔형성기를 적용하여 스테레오 신호들을 시간-방향 영역으로 표현한다. 이러한 SRP-PHAT의 시간-방향 출력값들은 사전에 정의된 프레임 수만큼 누적하여 시간-방향 블록으로 정의한다. 다음으로, 잡음에 강건한 도래각 추정을 위하여, 각 시간-방향 블록을 블록차감 기법을 사용하여 매 프레임에 대해 정규화한다. 이후, 다중음원 환경에서 각 음원의 방향을 클러스터링하기 위해 정규화된 시간-방향 블록에 비지도(unsupervised) NMF를 적용한다. 구체적으로, 음원의 개수와 이들의 도래각을 추정하는데 각각 활성 및 기저 행렬들을 사용한다. 제안된 방법의 도래각 추정 성능을 평가하기 위해 이중 마이크로폰 배열로부터 입력된 [$-35{\circ}$, 5m], [$12{\circ}$, 4m], 그리고 [$38{\circ}$, 4.m]에 각각 위치한 세 가지 음원들에 대한 추정 오차의 절대 평균(mean absolute error, MAE) 및 오차의 표준편차를 측정하였다. 실험 결과. 제안된 방법은 기존의 SRP-PHAT 기반 도래각 추정방법에 비해 상대적으로 MAE를 56.83% 줄일 수 있었다.
본 연구는 2006년부터 2012년까지 수행된 제3차 전국자연환경조사 포유류 데이터(70,562개)를 활용하여 국내에서 서식하는 포유류의 서식지 유형을 클러스터링하고 서식지 유형에 나타나는 종의 특징을 파악하고자 하였다. 제3차 전국자연환경조사의 야장에 기록된 서식지 유형 중에서 15개의 키워드를 뽑아 재분류하여 포유류 서식지유형을 통계 분석하였다. 서식지 유형 군집분석에서는 30회 이상 기록된 14개의 서식지 유형을 대상으로 비계층적 클러스터 분석(k 평균 클러스터 분석), 계층적 클러스터 분석, 비계량형 다차원척도법을 시행하였다. 2006년에서 2012년까지 전국에서 수집된 제3차 전국자연환경조사를 통해 확인된 포유류는 총 7목 16과 39종이었다. 서식지 유형에 대한 분류는 11개로 클러스터를 분류했을 때 단순구조지수가 가장 높았다(ssi = 0.07). 계층적 클러스터 분석으로 서식지 유형들 간의 유사성과 위계를 확인해 본 결과, 포유류에게는 주거지가 가장 차별된 서식지 유형이었고, 그 다음은 하천과 해안이 병합된 클러스터였다. 비계량형 다차원척도 분석 결과, 포유류에게 가장 차별된 서식지유형인 주거지의 경우 생쥐와 집쥐 두 종이 제한적으로 나타났으며, 해안과 하천의 경우 수달이 제한적으로 나타났다. 연구결과를 종합해보면, 포유류의 서식지 유형은 크게 산림을 주요 서식지와 이동경로로 이용하는 산림형과, 물을 주요 서식지로 이용하는 하천형, 주거지 인근에서 서식하는 주거형, 곡류나 씨앗을 주 먹이원으로 하는 저지대형 등 4가지로 구분할 수 있다.
대표적 소셜미디어인 유튜브는 기존 폐쇄형 콘텐츠 서비스와는 다르게 개방형 콘텐츠 서비스로 이용자들의 참여와 공유를 통하여 많은 인기를 유지하고 있다. 콘텐츠 산업에서 중요한 위치를 차지하고 있는 유투브 상의 콘텐츠 확산 요인에 관한 기존의 연구들은 댓글 수 등과 같은 일반적 정보 특성 요인과 조회 수 간에 상관관계 등을 분석하는 것이 대부분이었다. 최근 네트워크 구조를 기반으로 한 연구들도 진행되었으나 대부분 콘텐츠를 이용하는 대상인 구독자나 지인 등을 중심으로 한 인적 관계 네트워크 구조 연구가 대부분이었다. 이에 본 연구에서는 실질적인 콘텐츠를 중심으로 한 네트워크 구조와 일반요인을 통합한 모델을 제시하고 확산요인을 분석하고자 한다. 이를 위해 통합 모델 인과관계 분석과 함께 21,307개의 유튜브 콘텐츠를 콘텐츠 기반 네트워크 구조로 분석하였다. 본 연구를 통해 기존에 알려진 일반적 요인과 네트워크 요인들이 모두 조회수에 영향을 주는 인과관계를 통계적으로 재검증하였으며 통합적으로는 등록자의 구독자 수, 경과시간, 매개 중심성, 댓글 수, 근접 중심성, 클러스터링 계수, 평균 평점 순으로 조회 수에 긍정적인 영향을 미치는 것으로 분석되었다. 하지만 네트워크 요인중 연결정도 중심성과 고유벡터 중심성은 부정적 영향을 주는 것으로 분석되었다. 본 연구를 통하여 유튜브 콘텐츠 확산에 대한 일반영향요인과 구조적인 현상을 함께 규명하였다. 본 연구는 기업들이 유튜브와 같은 콘텐츠 서비스를 통한 온라인 마케팅 활동 시 콘텐츠들의 구조적인 면을 고려할 수 있는 근거를 제공하였으며 음반산업의 수요예측이나 콘텐츠 제작 업체들의 원활한 서비스 제공을 위한 설명력있는 영향요인 및 모델이 될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.