• 제목/요약/키워드: K 평균 클러스터링

검색결과 111건 처리시간 0.023초

계층적 분할 기법과 완화된 국부 탐색 알고리즘을 이용한 효율적인 광역 배치 (Efficient Global Placement Using Hierarchical Partitioning Technique and Relaxation Based Local Search)

  • 성영태;허성우
    • 대한전자공학회논문지SD
    • /
    • 제42권12호
    • /
    • pp.61-70
    • /
    • 2005
  • 본 논문에서는 "middle-down" 접근법에 기반한 기존의 표준 셀 배치기인 하이브리드 배치기$^{[25]}$의 단점을 보완한 효율적인 광역배치 알고리즘을 제안한다. hMETIS(클러스터링을 이용한 다단계 하이퍼그래프 분할기법)에 사용된 기법과 RBLS(Relaxation Based Local Search) 기법의 적절한 조합을 통해 기존 하이브리드 배치기의 광역배치 기능을 향상시킨다. hMETIS를 통한 분할기법을 "top-down" 방식으로 적용하고, 각 단계에서 RBLS를 사용하여 광역배치를 점진적으로 개선해 나가는 제안된 기법은 초기 배치에 크게 영향을 받는 기존 방법의 문제점을 해결하고, 실행 속도를 개선하면서도 배치의 질을 떨어뜨리지 않는 효과적인 기법이다. 제안한 알고리즘을 통해 구현된 개선된 배치기는 기존의 하이브리드 배치기나 FengShui와 같은 우수한 툴과 비교할 때 뒤지지 않는 성능을 보인다. 특별히 기존의 하이브리드 배치기에 비해 실행 속도 면에서 평균 5배 정도의 개선을 보였고, 큰 회로에 대해선 배선길이도 줄어드는 향상된 결과를 보였다.

다수 표적 탐지를 위한 Track-Before-Detect 알고리듬 연구 (Track-Before-Detect Algorithm for Multiple Target Detection)

  • 원대연;심상욱;김금성;탁민제;성기정;김응태
    • 한국항공우주학회지
    • /
    • 제39권9호
    • /
    • pp.848-857
    • /
    • 2011
  • 영상센서 기반의 충돌회피 시스템을 구성하기 위해서는 수 픽셀 이내의 낮은 신호대잡음비 환경에서 다수의 표적을 탐지할 수 있는 알고리듬이 필요하다. 이처럼 영상 내에서 희미하게 나타나는 잠재적인 표적과 잡음을 구분하기 위한 방법으로서 연속적인 영상 정보를 효율적으로 처리하는 Track-Before-Detect (TBD) 알고리듬이 연구되고 있다. 본 논문에서는 기존의 TBD 알고리듬을 확장하여 다수 표적 탐지 요구조건을 만족시키기 위한 두 가지 방식의 기법을 제시하였다. 첫 번째 방식은 동적 계획법과 K-평균 클러스터링 기법에 기반을 두고 있으며 두 번째 방식은 은닉 마르코프 모델에 Sub-Window 기법을 적용하였다. 제안한 방식의 성능 및 차이점은 수치해석 결과를 통해 분석하였다.

Bass Diffusion 모델을 활용한 스마트폰 시장의 성장 규모 예측: 몽골 사례 (Forecasting the Growth of Smartphone Market in Mongolia Using Bass Diffusion Model)

  • ;신광섭
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.193-212
    • /
    • 2022
  • 1969년에 처음 고안되어 확산에 대한 마케팅 연구를 이끈 Bass Diffusion Model은 일반적으로 마케팅 연구 및 경영 과학에서 가장 성공적인 모델 중 하나다. 본 연구는 휴대전화 가입 확산을 토대로 Bass 확산 모델의 사용을 설명하며 Bass 확산 모델을 3대 선진국 시장인 한국, 일본, 중국과 신흥시장인 베트남, 태국, 카자흐스탄, 몽골에 적용했다. 실험에서는 비선형 최소자승법을 사용하여 Bass확산 모델의 매개변수를 추정하였고 휴대전화 가입의 확산은 모든 경우에 S 곡선을 따른다. m, p 및 q 매개변수를 획득한 후 국가를 세 그룹으로 그룹화하기 위해 k-평균 클러스터 분석을 사용했으며 국가를 클러스터링함으로써 확산 속도와 패턴이 유사하며 신흥시장이 있는 국가가 선진국의 발자취를 따를 수 있음을 제안한다. 연구의 목적은 시장 성숙도의 시기와 규모를 예측하고 데이터가 Bass 모델의 혁신의 일반적인 확산 곡선을 따르는지 여부를 판단하는 것이다.

카드소팅을 활용한 디지털 신기술 과정 핵심역량 군집화에 관한 연구 (A Study on Clustering of Core Competencies to Deploy in and Develop Courseworks for New Digital Technology)

  • 이지운;이호;권정흠
    • 실천공학교육논문지
    • /
    • 제14권3호
    • /
    • pp.565-572
    • /
    • 2022
  • 카드소팅(Card sorting)은 항목 간의 관계에 대한 사용자의 인식을 이해하는 데 유용한 데이터 수집 방법으로서, 일반적으로 카드소팅은 사용자 조사 및 평가에 매우 유용한 직관적이고 비용 효율적인 기술이다. 본 연구에서는 각 분야 직업별 핵심역량들은 코스 개발을 위하여 다음 단계인 카드소팅 단계에서 활용되는 역량카드로 사용하고, 결과를 군집화 하기 위해 K-평균 알고리즘을 적용하여 군집화 결과를 도출하였다. 카드소팅 결과 각 분야 직업별 핵심역량들에 대한 역량 군집화는 Participant-Centric Analysis (PCA)를 바탕으로 검증하였고, 이를 바탕으로 역량에 따른 직업별 코스 및 역량 분류 결과와 클러스터링에 의한 카드 유사성 정도는 각 직업별 핵심 역량 카드수에 대해 소팅 참여자 수 대비 군집화에 적합하게 동의한 참여자의 수와 카드 유사성 정도를 도출하였다.

토마토 유전자연관지도 상의 DarT 마커 분포 (Distribution of DArT Markers in a Genetic Linkage Map of Tomato)

  • Truong, Hai Thi Hong;Graham, Elaine;Esch, Elisabeth;Wang, Jaw-Fen;Hanson, Peter
    • 원예과학기술지
    • /
    • 제28권4호
    • /
    • pp.664-671
    • /
    • 2010
  • 토마토풋마름병에 저항성인 $Solanum$ $lycopersicum$ H7996와 극도감수성인 $S.$ $pimpinellifolium$ WVa700 간의 교배를 통해 획득한 재조합순계계통 $F_9$ 세대의 188개체를 이용하여 유전자연관지도를 작성하였다. 유전자지도는 DarT 260종, AFLP 74종, RFLP 4종, SNP 1종 및 SSR 22종 등 총 361종의 마커로 구성되었다. 작성된 유전자지도는 총 13개의 연관군(LG)에 2042.7cM을 포함하였으며 마커간의 평균지도거리는 5.7cM이고 이중 DArT마커는 평균 7.9cM당 1개가 분포하였다. SSR 마커의 분포를 기초로 작성된 11개 연관군들은 토마토 염색체의5번과 12번을 제외한 10개 염색체에 해당하였다. DArT 마커는 다른 마커들처럼 토마토 유전체 상에 고르게 분포하였으며, 인접 마커와의 상호분석(${\leq}$ 0.5cM) 결과 클러스터링 빈도가 13.5%인 AFLP 마커보다 3배 정도 높은 38.8%의 빈도로 최고치를 나타내었다. 본 연구를 통해 토마토에서 최초로 DarT 마커를 이용한 유전자연관지도를 작성하였다.

극치강수량의 시공간적 특성을 이용한 지역빈도분석 (Regionalization of Extreme Rainfall with Spatio-Temporal Pattern)

  • 이정주;권현한;김병식;윤석영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1429-1433
    • /
    • 2010
  • 수공구조물의 설계, 수자원 관리계획의 수립, 재해영향 검토 등을 수행할 때, 재현기간에 따른 확률개념의 강우량, 홍수량, 저수량 등을 산정하여 사용하게 되며, 보통 대상지역의 장기 수문관측 자료를 이용하여 수문사상의 확률분포를 산정한 후 재현기간을 연장하여 원하는 설계빈도에 해당하는 양을 추정하게 된다. 미계측지역 또는 관측자료의 보유기간이 짧은 지역의 경우는 지역빈도 분석 결과를 이용하게 된다. 지역빈도해석을 위해서는 강우자료들의 동질성을 파악하는 것이 가장 기본적인 과정이 되며 이를 위해 통계학적인 범주화분석이 선행되어야 한다. 지점 빈도분석의 수문학적 동질성 판별을 위해 L-moment 방법, K-means 방법에 의한 군집분석 등이 주로 사용되며 관측소 위치좌표를 이용한 공간보간법을 적용하여 시각화하고 있다. 강수량은 시공간적으로 변하는 수문변량으로서 강수량의 시간적인 특성 또한 강수량의 특성을 정의하는데 매우 중요한 요소이다. 이러한 점에서 본 연구를 통해 강수지점의 공간적인 좌표 및 강수량의 양적인 범주화에 초점을 맞춘 기존 지역빈도분석의 범주화 과정에 덧붙여 시간적인 영향을 고려할 수 있는 요소들을 결정하고 이를 활용할 수 있는 범주화 과정을 제시하고자 한다. 즉, 극치강수량의 발생 시기에 대한 정량적인 분석이 가능한 순환통계기법을 이용하여 관측 지점별 시간 통계량을 산정하고, 이를 극치강수량과 결합하여 시 공간적인 특성자료를 생성한 후 이를 이용한 군집화 해석 모형을 개발하는데 연구의 목적이 있다. 분석 과정에 있어서 시간속성의 정량화 및 일반화는 순환통계기법을 사용하였으며, 극치강수량과 발생시점의 속성자료는 각각의 평균과 표준편차를 이용하였다. K-means 알고리즘을 이용해 결합자료를 군집화 하고, L-moment 방법으로 지역화 결과에 대한 검증을 수행하였다. 속성 결합 자료의 군집화 효과는 모의데이터 실험을 통해 확인하였으며, 우리 나라의 58개 기상관측소 자료를 이용하여 분석을 수행하였다. 예비해석 단계에서 100회의 군집분석을 통해 평균적인 centroid를 산정하고, 해당 값을 본 해석의 초기 centroid로 지정하여, 변동적인 클러스터링 경향을 안정화시켜 해석이 반복됨에 따라 군집화 결과가 달라지는 오류를 방지하였다. 또한 K-means 방법으로 계산된 군집별 공간거리 합의 크기에 따라 군집번호를 부여함으로써 군집의 번호순서대로 물리적인 연관성이 인접하도록 설정하였으며, 군집간의 경계선을 추출할 때 발생할 수 있는 오류를 방지하였다. 지역빈도분석 결과는 3차원 Spline 기법으로 도시하였다.

  • PDF

Generalized Clustering Network를 이용한 전방향 학습 알고리즘 (Feed-forward Learning Algorithm by Generalized Clustering Network)

  • 민준영;조형기
    • 한국정보처리학회논문지
    • /
    • 제2권5호
    • /
    • pp.619-625
    • /
    • 1995
  • 본 연구에서는 역전파(backpropagationlk)학습 알고리즘에 대체될 수 있는 전방향 학습 알고리즘에 준하는 혼합 인식모형을 구성한다. 본 알고리즘은 Nikhil R. Pal (1993)이 제안한 GLVQ(Generalized Learning Vector Quantization)를 이용하여 패턴을 클러스터링 한 다음 비유사성(dissimilarity)을 가진 패턴끼리 재구성(regrouping) 하여 단순 퍼셉트론(simple perceptron)을 이용하여 group별 학습을 한다. 일반적으로 역전파학습인 학습시간이 많이 소요된다는 단점이 있다[1]. 본 알고리즘의 특징으로 는 feed-forward학습이기 때문에 학습시간이 단축될 뿐만 아니라 전체 패턴을 그룹별 로 나누어 학습을 하기 때문에 인식률도 향상 시킬 수 있다. 본 알고리즘에 적용한 데 이타는 250개의 ASCII코드를 16$\times$8격자에 정규화시킨 비트 패턴(bit pattern)을 이용 하였다. 실험결과 250개의 패턴을 10개의 클러스터로 나누어 학습을 시켰을 때 각 클 러스터별 평균반복횟수 94.7회만에 250개의 ASCII코드를 100% 인식할 수 있었다.

  • PDF

이중 마이크로폰을 이용한 비음수 행렬분해 기반 다중음원 도래각 예측 (Nonnegative Matrix Factorization Based Direction-of-Arrival Estimation of Multiple Sound Sources Using Dual Microphone Array)

  • 전광명;김홍국;유승우
    • 전자공학회논문지
    • /
    • 제54권2호
    • /
    • pp.123-129
    • /
    • 2017
  • 본 논문에서는 이중 마이크로폰 배열을 이용하여 비음수 행렬분해(nonnegative matrix factorization, NMF) 기반으로 다중음원의 도래각을 추정하는 새로운 방법을 제안한다. 우선 이중 마이크로폰 배열에 들어온 음향 신호들을 연속된 분석프레임으로 분할한 후, 각 프레임에 대해 조향응답파워 위상변환(steered-response power phase transform, SRP-PHAT) 빔형성기를 적용하여 스테레오 신호들을 시간-방향 영역으로 표현한다. 이러한 SRP-PHAT의 시간-방향 출력값들은 사전에 정의된 프레임 수만큼 누적하여 시간-방향 블록으로 정의한다. 다음으로, 잡음에 강건한 도래각 추정을 위하여, 각 시간-방향 블록을 블록차감 기법을 사용하여 매 프레임에 대해 정규화한다. 이후, 다중음원 환경에서 각 음원의 방향을 클러스터링하기 위해 정규화된 시간-방향 블록에 비지도(unsupervised) NMF를 적용한다. 구체적으로, 음원의 개수와 이들의 도래각을 추정하는데 각각 활성 및 기저 행렬들을 사용한다. 제안된 방법의 도래각 추정 성능을 평가하기 위해 이중 마이크로폰 배열로부터 입력된 [$-35{\circ}$, 5m], [$12{\circ}$, 4m], 그리고 [$38{\circ}$, 4.m]에 각각 위치한 세 가지 음원들에 대한 추정 오차의 절대 평균(mean absolute error, MAE) 및 오차의 표준편차를 측정하였다. 실험 결과. 제안된 방법은 기존의 SRP-PHAT 기반 도래각 추정방법에 비해 상대적으로 MAE를 56.83% 줄일 수 있었다.

전국자연환경조사를 활용한 포유류 서식지 유형의 분류 (The Habitat Classification of mammals in Korea based on the National Ecosystem Survey)

  • 이화진;하정욱;차진열;이중효;윤희남;정철운;오홍식;배소연
    • 환경영향평가
    • /
    • 제26권2호
    • /
    • pp.160-170
    • /
    • 2017
  • 본 연구는 2006년부터 2012년까지 수행된 제3차 전국자연환경조사 포유류 데이터(70,562개)를 활용하여 국내에서 서식하는 포유류의 서식지 유형을 클러스터링하고 서식지 유형에 나타나는 종의 특징을 파악하고자 하였다. 제3차 전국자연환경조사의 야장에 기록된 서식지 유형 중에서 15개의 키워드를 뽑아 재분류하여 포유류 서식지유형을 통계 분석하였다. 서식지 유형 군집분석에서는 30회 이상 기록된 14개의 서식지 유형을 대상으로 비계층적 클러스터 분석(k 평균 클러스터 분석), 계층적 클러스터 분석, 비계량형 다차원척도법을 시행하였다. 2006년에서 2012년까지 전국에서 수집된 제3차 전국자연환경조사를 통해 확인된 포유류는 총 7목 16과 39종이었다. 서식지 유형에 대한 분류는 11개로 클러스터를 분류했을 때 단순구조지수가 가장 높았다(ssi = 0.07). 계층적 클러스터 분석으로 서식지 유형들 간의 유사성과 위계를 확인해 본 결과, 포유류에게는 주거지가 가장 차별된 서식지 유형이었고, 그 다음은 하천과 해안이 병합된 클러스터였다. 비계량형 다차원척도 분석 결과, 포유류에게 가장 차별된 서식지유형인 주거지의 경우 생쥐와 집쥐 두 종이 제한적으로 나타났으며, 해안과 하천의 경우 수달이 제한적으로 나타났다. 연구결과를 종합해보면, 포유류의 서식지 유형은 크게 산림을 주요 서식지와 이동경로로 이용하는 산림형과, 물을 주요 서식지로 이용하는 하천형, 주거지 인근에서 서식하는 주거형, 곡류나 씨앗을 주 먹이원으로 하는 저지대형 등 4가지로 구분할 수 있다.

일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구 (A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis)

  • 박병언;임규건
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.19-36
    • /
    • 2015
  • 대표적 소셜미디어인 유튜브는 기존 폐쇄형 콘텐츠 서비스와는 다르게 개방형 콘텐츠 서비스로 이용자들의 참여와 공유를 통하여 많은 인기를 유지하고 있다. 콘텐츠 산업에서 중요한 위치를 차지하고 있는 유투브 상의 콘텐츠 확산 요인에 관한 기존의 연구들은 댓글 수 등과 같은 일반적 정보 특성 요인과 조회 수 간에 상관관계 등을 분석하는 것이 대부분이었다. 최근 네트워크 구조를 기반으로 한 연구들도 진행되었으나 대부분 콘텐츠를 이용하는 대상인 구독자나 지인 등을 중심으로 한 인적 관계 네트워크 구조 연구가 대부분이었다. 이에 본 연구에서는 실질적인 콘텐츠를 중심으로 한 네트워크 구조와 일반요인을 통합한 모델을 제시하고 확산요인을 분석하고자 한다. 이를 위해 통합 모델 인과관계 분석과 함께 21,307개의 유튜브 콘텐츠를 콘텐츠 기반 네트워크 구조로 분석하였다. 본 연구를 통해 기존에 알려진 일반적 요인과 네트워크 요인들이 모두 조회수에 영향을 주는 인과관계를 통계적으로 재검증하였으며 통합적으로는 등록자의 구독자 수, 경과시간, 매개 중심성, 댓글 수, 근접 중심성, 클러스터링 계수, 평균 평점 순으로 조회 수에 긍정적인 영향을 미치는 것으로 분석되었다. 하지만 네트워크 요인중 연결정도 중심성과 고유벡터 중심성은 부정적 영향을 주는 것으로 분석되었다. 본 연구를 통하여 유튜브 콘텐츠 확산에 대한 일반영향요인과 구조적인 현상을 함께 규명하였다. 본 연구는 기업들이 유튜브와 같은 콘텐츠 서비스를 통한 온라인 마케팅 활동 시 콘텐츠들의 구조적인 면을 고려할 수 있는 근거를 제공하였으며 음반산업의 수요예측이나 콘텐츠 제작 업체들의 원활한 서비스 제공을 위한 설명력있는 영향요인 및 모델이 될 수 있을 것이다.