• Title/Summary/Keyword: K 평균 클러스터링

Search Result 111, Processing Time 0.028 seconds

Privacy-Preserving K-means Clustering using Homomorphic Encryption in a Multiple Clients Environment (다중 클라이언트 환경에서 동형 암호를 이용한 프라이버시 보장형 K-평균 클러스터링)

  • Kwon, Hee-Yong;Im, Jong-Hyuk;Lee, Mun-Kyu
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.7-17
    • /
    • 2019
  • Machine learning is one of the most accurate techniques to predict and analyze various phenomena. K-means clustering is a kind of machine learning technique that classifies given data into clusters of similar data. Because it is desirable to perform an analysis based on a lot of data for better performance, K-means clustering can be performed in a model with a server that calculates the centroids of the clusters, and a number of clients that provide data to server. However, this model has the problem that if the clients' data are associated with private information, the server can infringe clients' privacy. In this paper, to solve this problem in a model with a number of clients, we propose a privacy-preserving K-means clustering method that can perform machine learning, concealing private information using homomorphic encryption.

Comparison of Initial Seeds Methods for K-Means Clustering (K-Means 클러스터링에서 초기 중심 선정 방법 비교)

  • Lee, Shinwon
    • Journal of Internet Computing and Services
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • Clustering method is divided into hierarchical clustering, partitioning clustering, and more. K-Means algorithm is one of partitioning clustering and is adequate to cluster so many documents rapidly and easily. It has disadvantage that the random initial centers cause different result. So, the better choice is to place them as far away as possible from each other. We propose a new method of selecting initial centers in K-Means clustering. This method uses triangle height for initial centers of clusters. After that, the centers are distributed evenly and that result is more accurate than initial cluster centers selected random. It is time-consuming, but can reduce total clustering time by minimizing the number of allocation and recalculation. We can reduce the time spent on total clustering. Compared with the standard algorithm, average consuming time is reduced 38.4%.

K-means Clustering Method according to Documentation Numbers (문서 수에 따른 가중치를 적용한 K-means 문서 클러스터링)

  • 조시성;안동언;정성종;이신원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1557-1560
    • /
    • 2003
  • 본 논문에서는 이 문서 클러스터링 방법 중 계층적 방법인 Kmeans 클러스터링 알고리즘을 이용하여 문서를 클러스터링 하고자 한다. 기존의 Kmeans 클러스터링 알고리즘은 문서의 수가 많을 경우 하나의 클러스터링에 너무 많은 문서들이 할당되는 문제점이 있다. 이 치우침을 완화하고자 각 클러스터링에 할당된 문서 수에 따라서 문서에 가중치를 부여한 후 다시 클러스터링을 하는 방법을 제안하였다. 실험 결과는 정확률, 재현율을 결합한 조화 평균(F-measure)을 사용하여 평가하였으며 기존 알고리즘보다 9%이상의 성능 향상을 나타냈다.

  • PDF

RHadoop platform for K-Means clustering of big data (빅데이터 K-평균 클러스터링을 위한 RHadoop 플랫폼)

  • Shin, Ji Eun;Oh, Yoon Sik;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.609-619
    • /
    • 2016
  • RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. In this paper, we implement K-Means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. The main idea introduces a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. We showed that our K-Means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases. We also implemented Elbow method with MapReduce for finding the optimum number of clusters for K-Means clustering on large dataset. Comparison with our MapReduce implementation of Elbow method and classical kmeans() in R with small data showed similar results.

Spectral clustering: summary and recent research issues (스펙트럴 클러스터링 - 요약 및 최근 연구동향)

  • Jeong, Sanghun;Bae, Suhyeon;Kim, Choongrak
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.115-122
    • /
    • 2020
  • K-means clustering uses a spherical or elliptical metric to group data points; however, it does not work well for non-convex data such as the concentric circles. Spectral clustering, based on graph theory, is a generalized and robust technique to deal with non-standard type of data such as non-convex data. Results obtained by spectral clustering often outperform traditional clustering such as K-means. In this paper, we review spectral clustering and show important issues in spectral clustering such as determining the number of clusters K, estimation of scale parameter in the adjacency of two points, and the dimension reduction technique in clustering high-dimensional data.

A Clustering Method of Web Navigation Pattern Using the Hyperplane (하이퍼플래인을 이용한 웹 방문 패턴에 대한 사용자 클러스터링)

  • 이해각;주영옥
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.608-611
    • /
    • 2004
  • 사용자 웹 방문 패턴 발견으로써의 사용자 클러스터링은 웹 사이트를 이용하는 사용자들의 취향과 행동방식을 얻어내는데 매우 유용하다. 또한 이러한 정보는 웹 개인화나 웹 사이트를 재구성 하는 데 필수적 이 다. 본 논문에서 사용자 웹 방문 패스를 클러스터링 하기 위한 시간적으로 효율적이며, 패스 특성을 보다 정확하게 표현하여 클러스터링 할 수 있는 알고리즘이 제안되며, 제안된 알고리즘은 패스 간의 유사도 측정을 통한 클러스터링, 하이퍼플랜을 이용한 K-평균 클러스터링의 2단계 과정으로 이루어져 있다.

  • PDF

K-means Clustering Method according to Documentation Numbers (문서 수에 따른 가중치를 적용한 K-means 문서 클러스터링)

  • Cho, Cea-Sung;An, Dong-Un;Jeong, Sung-Jong;Lee, Shin-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.345-348
    • /
    • 2003
  • 본 논문에서는 이 문서 클러스터링 방법 중 계층적 방법인 Kmeans 클러스터링 알고리즘을 이용하여 문서를 클러스터링 하고자 한다 기존의 Kmeans 클러스터링 알고리즘은 문서의 수가 많을 경우 하나의 클러스터링에 너무 많은 문서들이 할당되는 문제점이 있다. 이 치우침을 완화하고자 각 클러스터링에 할당된 문서 수에 따라서 문서에 가중치를 부여한 후 다시 클러스터링을 하는 방법을 제안하였다. 실험 결과는 정확률, 재현율을 결합한 조화 평균(F-measure)를 사용하여 평가하였으며 기존 알고리즘보다 9%이상의 성능 향상을 나타냈다.

  • PDF

Differentially Private k-Means Clustering based on Dynamic Space Partitioning using a Quad-Tree (쿼드 트리를 이용한 동적 공간 분할 기반 차분 프라이버시 k-평균 클러스터링 알고리즘)

  • Goo, Hanjun;Jung, Woohwan;Oh, Seongwoong;Kwon, Suyong;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.288-293
    • /
    • 2018
  • There have recently been several studies investigating how to apply a privacy preserving technique to publish data. Differential privacy can protect personal information regardless of an attacker's background knowledge by adding probabilistic noise to the original data. To perform differentially private k-means clustering, the existing algorithm builds a differentially private histogram and performs the k-means clustering. Since it constructs an equi-width histogram without considering the distribution of data, there are many buckets to which noise should be added. We propose a k-means clustering algorithm using a quad-tree that captures the distribution of data by using a small number of buckets. Our experiments show that the proposed algorithm shows better performance than the existing algorithm.

A Differentially Private K-Means Clustering using Quadtree and Uniform Sampling (쿼드트리와 균등 샘플링를 이용한 효과적 차분 프라이버시 K-평균 클러스터링 알고리즘)

  • Hong, Daeyoung;Goo, Hanjun;Shim, Kyuseok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.25-26
    • /
    • 2018
  • 최근 데이터를 공개할 때 프라이버시를 보호하기 위한 방법들이 연구되고 있다. 그 중 차분 프라이버시(differential privacy)는 최소성 공격 등에 대해서도 안전함이 증명된 익명화 기법이다. 본 논문에서는 기존 차분 프라이버시 -평균 클러스터링 알고리즘의 성능을 개선하고 실생활 데이터를 이용한 실험을 통해 이를 검증한다.

  • PDF

Refining Initial Seeds using Max Average Distance for K-Means Clustering (K-Means 클러스터링 성능 향상을 위한 최대평균거리 기반 초기값 설정)

  • Lee, Shin-Won;Lee, Won-Hee
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.103-111
    • /
    • 2011
  • Clustering methods is divided into hierarchical clustering, partitioning clustering, and more. If the amount of documents is huge, it takes too much time to cluster them in hierarchical clustering. In this paper we deal with K-Means algorithm that is one of partitioning clustering and is adequate to cluster so many documents rapidly and easily. We propose the new method of selecting initial seeds in K-Means algorithm. In this method, the initial seeds have been selected that are positioned as far away from each other as possible.