• Title/Summary/Keyword: K 평균 알고리즘

Search Result 1,295, Processing Time 0.044 seconds

3D Model Retrieval Using Sliced Shape Image (단면 형상 영상을 이용한 3차원 모델 검색)

  • Park, Yu-Sin;Seo, Yung-Ho;Yun, Yong-In;Kwon, Jun-Sik;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.27-37
    • /
    • 2008
  • Applications of 3D data increase with advancement of multimedia technique and contents, and it is necessary to manage and to retrieve for 3D data efficiently. In this paper, we propose a new method using the sliced shape which extracts efficiently a feature description for shape-based retrieval of 3D models. Since the feature descriptor of 3D model should be invariant to translation, rotation and scale for its model, normalization of models requires for 3D model retrieval system. This paper uses principal component analysis(PCA) method in order to normalize all the models. The proposed algorithm finds a direction of each axis by the PCA and creates orthogonal n planes in each axis. These planes are orthogonalized with each axis, and are used to extract sliced shape image. Sliced shape image is the 2D plane created by intersecting at between 3D model and these planes. The proposed feature descriptor is a distribution of Euclidean distances from center point of sliced shape image to its outline. A performed evaluation is used for average of the normalize modified retrieval rank(ANMRR) with a standard evaluation from MPEG-7. In our experimental results, we demonstrate that the proposed method is an efficient 3D model retrieval.

Estimation of Genetic Parameters and Reproductivity Test of Genetic Evaluation for Growth-related Traits of olive Flounder Paralichthys olivaceus at 180 Days of Age (180일령 넙치 Paralichthys oilvaceus의 성장형질에 대한 유전모수 추정 및 유전능력평가 재현성 검정)

  • Kim, Hyun-Chul;Noh, Jae-Koo;Lee, Jeong-Ho;Kim, Jong-Hyun;Park, Choul-Ji;Kang, Jung-Ha;Kim, Kyung-Kil;Lee, Jung-Gyu;Myeong, Jeong-In
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.317-324
    • /
    • 2008
  • This study estimated the genetic parameters and breeding values for the growth-related traits of the 1st generation produced in 2005. The heritability of body weight, total length, body height, body shape and condition factor of 180 days old olive flounders Paralichthys olivaceus, the 1st generation of selection, was estimated as 0.564, 0.590, 0.588, 0.306 and 0.332, respectively. And reproductivity of genetic evaluation for crossing superior flounders and inferior ones was tested using the subsequent generation produced in 2006 based on the breeding values of 1st generation. In the least-squares means of body weight and total length for each group of crossing, the values of crossing group between superior flounders ($S{\times}S$) showed $145.6{\pm}1.8\;g$ and $22.4{\pm}0.1\;cm$, respectively. The values of crossing group between superior and inferior flounders ($S{\times}I$) showed $133.2{\pm}2.5\;g$ and $22.1{\pm}0.1\;cm$, respectively. The values of crossing group between inferior flounders ($I{\times}I$) showed $114.0{\pm}2.1\;g$ and $21.08{\pm}0.12\;cm$, respectively. In the results, flounders are determined as appropriate selective breeding fish with the high heritability of flounders in early ages at 180 days old, and the reproductivity of genetic evaluation was also high.

Approximation of Multiple Trait Effective Daughter Contribution by Dairy Proven Bulls for MACE (젖소 국제유전능력 평가를 위한 종모우별 다형질 Effective Daughter Contribution 추정)

  • Cho, Kwang-Hyun;Choi, Tae-Jeong;Cho, Chung-Il;Park, Kyung-Do;Do, Kyoung-Tag;Oh, Jae-Don;Lee, Hak-Kyo;Kong, Hong-Sik;Lee, Joon-Ho
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.399-403
    • /
    • 2013
  • This study was conducted to investigate the basic concept of multiple trait effective daughter contribution (MTEDC) for dairy cattle sires and calculate effective daughter contribution (EDC) by applying a five lactation multiple trait model using milk yield test records of daughters for the Multiple-trait Across Country Evaluation (MACE). Milk yield data and pedigree information of 301,551 cows that were the progeny of 2,046 Korean and imported dairy bulls were collected from the National Agricultural Cooperative Federation and used in this study. For MTEDC approximation, the reliability of the breeding value was separated based on parents average, own yield deviation and mate adjusted progeny contribution. EDC was then calculated by lactation using these reliabilities. The average number of recorded daughters per sire by lactations were 140.57, 94.24, 55.14, 29.20 and 14.06 from the first to fifth lactation, respectively. However, the average EDC per sire by lactation using the five lactation multiple trait model was 113.49, 89.28, 73.56, 54.02 and 35.08 from the first to fifth lactation, respectively, while the decrease of EDC in late lactations was comparably lower than the average number of recorded daughters per sire. These findings indicate that the availability of daughters without late lactation records is increased by genetic correlation using the multiple trait model. Owing to the relatedness between the EDC and reliability of the estimated breeding value for sire, understanding the MTEDC algorithm and continuous monitoring of EDC is required for correct MACE application of the five lactation multiple trait model.

Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula (기후변화 시나리오를 활용한 미래 한반도 물수급 전망)

  • Kim, Cho-Rong;Kim, Young-Oh;Seo, Seung Beom;Choi, Su-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.807-819
    • /
    • 2013
  • This study proposes a new methodology for future water balance projection considering climate change by assigning a weight to each scenario instead of inputting future streamflows based on GCMs into a water balance model directly. K-nearest neighbor algorithm was employed to assign weights and streamflows in non-flood period (October to the following June) was selected as the criterion for assigning weights. GCM-driven precipitation was input to TANK model to simulate future streamflow scenarios and Quantile Mapping was applied to correct bias between GCM hindcast and historical data. Based on these bias-corrected streamflows, different weights were assigned to each streamflow scenarios to calculate water shortage for the projection periods; 2020s (2010~2039), 2050s (2040~2069), and 2080s (2070~2099). As a result by applying the proposed methodology to project water shortage over the Korean Peninsula, average water shortage for 2020s is projected to increase to 10~32% comparing to the basis (1967~2003). In addition, according to getting decreased in streamflows in non-flood period gradually by 2080s, average water shortage for 2080s is projected to increase up to 97% (516.5 million $m^3/yr$) as maximum comparing to the basis. While the existing research on climate change gives radical increase in future water shortage, the results projected by the weighting method shows conservative change. This study has significance in the applicability of water balance projection regarding climate change, keeping the existing framework of national water resources planning and this lessens the confusion for decision-makers in water sectors.

Voltage-Frequency-Island Aware Energy Optimization Methodology for Network-on-Chip Design (전압-주파수-구역을 고려한 에너지 최적화 네트워크-온-칩 설계 방법론)

  • Kim, Woo-Joong;Kwon, Soon-Tae;Shin, Dong-Kun;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.22-30
    • /
    • 2009
  • Due to high levels of integration and complexity, the Network-on-Chip (NoC) approach has emerged as a new design paradigm to overcome on-chip communication issues and data bandwidth limits in conventional SoC(System-on-Chip) design. In particular, exponentially growing of energy consumption caused by high frequency, synchronization and distributing a single global clock signal throughout the chip have become major design bottlenecks. To deal with these issues, a globally asynchronous, locally synchronous (GALS) design combined with low power techniques is considered. Such a design style fits nicely with the concept of voltage-frequency-islands (VFI) which has been recently introduced for achieving fine-grain system-level power management. In this paper, we propose an efficient design methodology that minimizes energy consumption by VFI partitioning on an NoC architecture as well as assigning supply and threshold voltage levels to each VFI. The proposed algorithm which find VFI and appropriate core (or processing element) supply voltage consists of traffic-aware core graph partitioning, communication contention delay-aware tile mapping, power variation-aware core dynamic voltage scaling (DVS), power efficient VFI merging and voltage update on the VFIs Simulation results show that average 10.3% improvement in energy consumption compared to other existing works.

Effect of Location Error on the Estimation of Aboveground Biomass Carbon Stock (지상부 바이오매스 탄소저장량의 추정에 위치 오차가 미치는 영향)

  • Kim, Sang-Pil;Heo, Joon;Jung, Jae-Hoon;Yoo, Su-Hong;Kim, Kyoung-Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • Estimation of biomass carbon stock is an important research for estimation of public benefit of forest. Previous studies about biomass carbon stock estimation have limitations, which come from the used deterministic models. The most serious problem of deterministic models is that deterministic models do not provide any explanation about the relevant effects of errors. In this study, the effects of location errors were analyzed in order to estimation of biomass carbon stock of Danyang area using Monte Carlo simulation method. More specifically, the k-Nearest Neighbor(kNN) algorithm was used for basic estimation. In this procedure, random and systematic errors were added on the location of Sample plot, and effects on estimation error were analyzed by checking the changes of RMSE. As a result of random error simulation, mean RMSE of estimation was increased from 24.8 tonC/ha to 26 tonC/ha when 0.5~1 pixel location errors were added. However, mean RMSE was converged after the location errors were added 0.8 pixel, because of characteristic of study site. In case of the systematic error simulation, any significant trends of RMSE were not detected in the test data.

Consumer Trend Platform Development for Combination Analysis of Structured and Unstructured Big Data (정형 비정형 빅데이터의 융합분석을 위한 소비 트랜드 플랫폼 개발)

  • Kim, Sunghyun;Chang, Sokho;Lee, Sangwon
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.133-143
    • /
    • 2017
  • Data is the most important asset in the financial sector. On average, 71 percent of financial institutions generate competitive advantage over data analysis. In particular, in the card industry, the card transaction data is widely used in the development of merchant information, economic fluctuations, and information services by analyzing patterns of consumer behavior and preference trends of all customers. However, creation of new value through fusion of data is insufficient. This study introduces the analysis and forecasting of consumption trends of credit card companies which convergently analyzed the social data and the sales data of the company's own. BC Card developed an algorithm for linking card and social data with trend profiling, and developed a visualization system for analysis contents. In order to verify the performance, BC card analyzed the trends related to 'Six Pocket' and conducted th pilot marketing campaign. As a result, they increased marketing multiplier by 40~100%. This study has implications for creating a methodology and case for analyzing the convergence of structured and unstructured data analysis that have been done separately in the past. This will provide useful implications for future trends not only in card industry but also in other industries.

An Objective Procedure to Decide the Scale Factors for Applying Land-form Classification Methodology Using TPI (TPI 응용에 의한 산악지형 분류기법의 적용을 위한 scale factor 선정방법 개발)

  • Jang, Kwangmin;Song, Jungeun;Park, Kyeung;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.639-645
    • /
    • 2009
  • The objective of this research was to introduce the TPI approach for interpreting land-forms of mountain forests in South Korea. We develop an objective procedure to decide the scale factor as a basic analytical unit in land-form classification of rugged mountain areas using TPI. In order to determine the scale factor associated with the pattern of slope profiles, the gradient variance curve was derived from a revised hypsometric curve developed using the relief energy of topographic profiles. Using the gradient variance curve, found was the grid size with which the change in relief energy got the peak point. The grid size at the peak point was determined as the scale factor for the study area. In order to investigate the performance of the procedure based on the gradient variance curve, it was applied to determination of the site-specific scale factors of 3 different terrain conditions; highly-rugged, moderately-rugged and relatively less-rugged. The TPI associated with the corresponding scale factors by study site was, then, determined and used in classifying the land-forms. According to the results of this study, the scale factor gets shorter with more rugged terrain conditions. It was also found that the numbers of valleys and ridges estimated with TPI show almost the same trends as those of the observed and the scale factors tends to approach to the mean distance of ridges.

P Wave Detection Algorithm through Adaptive Threshold and QRS Peak Variability (적응형 문턱치와 QRS피크 변화에 따른 P파 검출 알고리즘)

  • Cho, Ik-sung;Kim, Joo-Man;Lee, Wan-Jik;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1587-1595
    • /
    • 2016
  • P wave is cardiac parameters that represent the electrical and physiological characteristics, it is very important to diagnose atrial arrhythmia. However, It is very difficult to detect because of the small size compared to R wave and the various morphology. Several methods for detecting P wave has been proposed, such as frequency analysis and non-linear approach. However, in the case of conduction abnormality such as AV block or atrial arrhythmia, detection accuracy is at the lower level. We propose P wave detection algorithm through adaptive threshold and QRS peak variability. For this purpose, we detected Q, R, S wave from noise-free ECG signal through the preprocessing method. And then we classified three pattern of P wave by peak variability and detected adaptive window and threshold. The performance of P wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 92.60%.

Development of Radar Polygon Method : Areal Rainfall Estimation Technique Based on the Probability of Similar Rainfall Occurrence (Radar Polygon 기법의 개발 : 유사강우발생 확률에 근거한 면적강우량 산정기법)

  • Cho, Woonki;Lee, Dongryul;Lee, Jaehyeon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.937-944
    • /
    • 2015
  • This study proposed a novel technique, namely the Radar Polygon Method (RPM), for areal rainfall estimation based on radar precipitation data. The RPM algorithm has the following steps: 1. Determine a map of the similar rainfall occurrence of which each grid cell contains the binary information on whether the grid cell rainfall is similar to that of the observation gage; 2. Determine the similar rainfall probability map for each gage of which each grid cell contains the probability of having the rainfall similar to that of the observation gage; 3. Determine the governing territory of each gage by comparing the probability maps of the gages. RPM method was applied to the Anseong stream basin. Radar Polygons and Thiessen Polygons of the study area were similar to each other with the difference between the two being greater for the rain gage highly influenced by the orography. However, the weight factor between the two were similar with each other. The significance of this study is to pioneer a new application field of radar rainfall data that has been limited due to short observation period and low accuracy.