• Title/Summary/Keyword: K 최대근접이웃

Search Result 6, Processing Time 0.017 seconds

A Study of Travel Time Prediction using K-Nearest Neighborhood Method (K 최대근접이웃 방법을 이용한 통행시간 예측에 대한 연구)

  • Lim, Sung-Han;Lee, Hyang-Mi;Park, Seong-Lyong;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.835-845
    • /
    • 2013
  • Travel-time is considered the most typical and preferred traffic information for intelligent transportation systems(ITS). This paper proposes a real-time travel-time prediction method for a national highway. In this paper, the K-nearest neighbor(KNN) method is used for travel time prediction. The KNN method (a nonparametric method) is appropriate for a real-time traffic management system because the method needs no additional assumptions or parameter calibration. The performances of various models are compared based on mean absolute percentage error(MAPE) and coefficient of variation(CV). In real application, the analysis of real traffic data collected from Korean national highways indicates that the proposed model outperforms other prediction models such as the historical average model and the Kalman filter model. It is expected to improve travel-time reliability by flexibly using travel-time from the proposed model with travel-time from the interval detectors.

Short-term Traffic States Prediction Using k-Nearest Neighbor Algorithm: Focused on Urban Expressway in Seoul (k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례)

  • KIM, Hyungjoo;PARK, Shin Hyoung;JANG, Kitae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.158-167
    • /
    • 2016
  • This study evaluates potential sources of errors in k-NN(k-nearest neighbor) algorithm such as procedures, variables, and input data. Previous research has been thoroughly reviewed for understanding fundamentals of k-NN algorithm that has been widely used for short-term traffic states prediction. The framework of this algorithm commonly includes historical data smoothing, pattern database, similarity measure, k-value, and prediction horizon. The outcomes of this study suggests that: i) historical data smoothing is recommended to reduce random noise of measured traffic data; ii) the historical database should contain traffic state information on both normal and event conditions; and iii) trial and error method can improve the prediction accuracy by better searching for the optimum input time series and k-value. The study results also demonstrates that predicted error increases with the duration of prediction horizon and rapidly changing traffic states.

Efficient Processing of k-Farthest Neighbor Queries for Road Networks

  • Kim, Taelee;Cho, Hyung-Ju;Hong, Hee Ju;Nam, Hyogeun;Cho, Hyejun;Do, Gyung Yoon;Jeon, Pilkyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.79-89
    • /
    • 2019
  • While most research focuses on the k-nearest neighbors (kNN) queries in the database community, an important type of proximity queries called k-farthest neighbors (kFN) queries has not received much attention. This paper addresses the problem of finding the k-farthest neighbors in road networks. Given a positive integer k, a query object q, and a set of data points P, a kFN query returns k data objects farthest from the query object q. Little attention has been paid to processing kFN queries in road networks. The challenge of processing kFN queries in road networks is reducing the number of network distance computations, which is the most prominent difference between a road network and a Euclidean space. In this study, we propose an efficient algorithm called FANS for k-FArthest Neighbor Search in road networks. We present a shared computation strategy to avoid redundant computation of the distances between a query object and data objects. We also present effective pruning techniques based on the maximum distance from a query object to data segments. Finally, we demonstrate the efficiency and scalability of our proposed solution with extensive experiments using real-world roadmaps.

Directional conditionally autoregressive models (방향성을 고려한 공간적 조건부 자기회귀 모형)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.835-847
    • /
    • 2016
  • To analyze lattice or areal data, a conditionally autoregressive (CAR) model has been widely used in the eld of spatial analysis. The spatial neighborhoods within CAR model are generally formed using only inter-distance or boundaries between regions. Kyung and Ghosh (2010) proposed a new class of models to accommodate spatial variations that may depend on directions. The proposed model, a directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Properties of maximum likelihood estimators of a Gaussian DCAR are discussed. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

Expressway Travel Time Prediction Using K-Nearest Neighborhood (KNN 알고리즘을 활용한 고속도로 통행시간 예측)

  • Shin, Kangwon;Shim, Sangwoo;Choi, Keechoo;Kim, Soohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1873-1879
    • /
    • 2014
  • There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

Efficient k-nn search on directory-based index structure (평면 색인 구조에서 효율적인 k-근접 이웃 찾기)

  • 김태완;강혜영;이기준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.779-781
    • /
    • 2003
  • 최근에 제안된 VA-File[6]은 k-NN 질의 처리에서 아주 효율적이라고 알려져 있다. 제시된 방법은 분할된 데이터의 저장 효율성을 보장하지 못하기 때문에 각 차원에 할당된 비트의 수가 증가하면(비트수=3~5) 할수륵 거의 모든 데이터에 대하여 MBH를 생성하는 단점이 있다. k-NN 질의는 거의 모든 데이터를 순차 검색을 통한 일차적 가지제거작업을 한 후. 질의를 수행하기 위한 디스크 접근을 한다. 따라서, 질의를 수행하기 위한 디스크 접근 횟수는 다른 방법들에 비하여 거의 최적에 가까운 접근 횟수를 가지나 주 기억 장치에서 최소-힘을 이용하여 수행하는 일차적 가지 제거 작업의 오버 로더는 간과되었다. 우리는 기존에 알려진 재귀적으로 공간을 두개의 부 공간으로 분할하는 방법을 사용하여 VA-File 과 같은 디렉토리 자료구조를 구축하여 k-NN 실험을 하였다. 이러한 분할된 MBH의 정방형성을 선호하는 방법은 저장 효율성을 보장한다. 실제 데이터에 대한 실험에서 우리가 실험한 간단한 방법은 디스크 접근 시간 및 CPU 시간을 합한 전체 수행시간에서 VA-File에 비하여 최대 93% 정도의 성능 향상이 있다.

  • PDF