• Title/Summary/Keyword: K$^+$ channel opener

Search Result 56, Processing Time 0.231 seconds

The Role of Mitochondrial ATP-sensitive Potassium Channel on Intestinal Pacemaking Activity

  • Kim, Byung-Joo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.209-213
    • /
    • 2005
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. In the present study, we investigated the effect of mitochondrial ATP-sensitive potassium (mitoKATP) channel on pacemaking activity in cultured ICCs from murine small intestine by using whole-cell patch clamp techniques. Under current clamp mode, at 10μM glibenclamide, there was no change in pacemaking activity of ICCs. At $30{\mu}M$ glibenclamide, an inhibitor of the ATP sensitive $K^+$ channels, we could find two examples. If pacemaking activity of ICCs was irregulating, pacemaking activity of ICCs was changed into regulating and if in normal conditions, membrane potential amplitude was increased. At $50{\mu}M$ glibenclamide, the resting membrane potential was depolarized. At 3mM 5-HDA, an inhibitor of the mitoKATP channels, inhibited the pacemaking activity of ICCs. Both the amplitude and the frequency were decreased. At 5 mM 5-HDA, both the amplitude and the frequency were completely abolished. Diazoxide, an opener of the mitoKATP channels, was applied to examine its effect on pacemaking activity of ICCs. At $50{\mu}M$ concentration, the pacemaking activity of ICCs was inhibited. Both the amplitude and the frequency were decreased. At 1 mM concentration, both the amplitude and the frequency were completely abolished and the resting membrane potential was shaked.These results indicate that mitoKATP channel has an important role in pacemaking activity of ICCs.

The Influences of G Proteins, $Ca^{2+}$, and $K^+$ Channels on Electrical Field Stimulation in Cat Esophageal Smooth Muscle

  • Park, Jun-Hong;Kim, Hyun-Sik;Park, Sun-Young;Im, Chae-Uk;Jeong, Ji-Hoon;Kim, In-Kyeom;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.393-400
    • /
    • 2009
  • NO released by myenteric neurons controls the off contraction induced by electrical field stimulation (EFS) in distal esophageal smooth muscle, but in the presence of nitric oxide synthase (NOS) inhibitor, L-NAME, contraction by EFS occurs at the same time. The authors investigated the intracellular signaling pathways related with G protein and ionic channel EFS-induced contraction using cat esophageal muscles. EFS-induced contractions were significantly suppressed by tetrodotoxin ($1\;{\mu}M$) and atropine ($1\;{\mu}M$). Furthermore, nimodipine inhibited both on and off contractions by EFS in a concentration dependent meaner. The characteristics of 'on' and 'off contraction and the effects of G-proteins, phospholipase, and $K^+$ channel on EFS-induced contraction in smooth muscle were also investigated. Pertussis toxin (PTX, a $G_i$ inactivator) attenuated both EFS-induced contractions. Cholera toxin (CTX, $G_s$ inactivator) also decreased the amplitudes of EFS-induced off and on contractions. However, phospholipase inhibitors did not affect these contractions. Pinacidil (a $K^+$ channel opener) decreased these contractions, and tetraethylammonium (TEA, ${K^+}_{Ca}$ channel blocker) increased them. These results suggest that EFS-induced on and off contractions can be mediated by the activations Gi or Gs proteins, and that L-type $Ca^{2+}$ channel may be activated by G-protein ${\alpha}$ subunits. Furthermore, ${K^+}_{Ca^-}$ channel involve in the depolarization of esophageal smooth muscle. Further studies are required to characterize the physiological regulation of $Ca^{2+}$ channel and to investigate the effects of other $K^+$ channels on EFS-induced on and off contractions.

Expression of ATP-sensitive Potassium Channel and Sulfonylurea Receptor in Neonate and Adult Rat Tissues

  • Lee, So-Yeong;Lee, Hang;Lee, Mun-Han;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.433-441
    • /
    • 2001
  • The ATP-sensitive potassium $(K_{ATP})$) channel is a member of inward rectifier potassium channel (Kir) that is inhibited by intracellular ATP and functions in close relation to sulfonylurea receptors (SUR). Although the molecular mechanism and physiological function of $K_{ATP}$ channels are well understood, the expression pattern during development or treatment with the channel modulators such as glybenclamide is little known. In this work, we determined mRNA levels of a $K_{ATP}$ channel (Kir6.2) and a sulfonylurea receptor (SUR2) in rat tissues by RNase protection assay. Levels of Kir6.2 and SUR2 mRNA in the rat brain and skeletal muscle were higher in adult $(90{\sim}120\;days)$ than in neonate $(2{\sim}8\;days),$ whereas those in the heart were not much different between neonate $(2{\sim}8\;days)$ and adult $(90{\sim}120\;days).$ In addition, none of $K_{ATP}$ channel modulators (opener, pinacidil and nicorandil; blocker, glybenclamide) affected the Kir6.2 mRNA levels in the heart, brain and skeletal muscle. The results indicate that the expression of Kir and SUR genes can vary age-dependently, but the expression of Kir is not dependent on the long-term treatment of channel modulators. The effect of the channel modulators on mRNA level of SUR is remained to be studied further.

  • PDF

The effect of SKF S25A on SNP-, Ach-, or Pinacidil-Induced Relaxation in the Aorta of Rat (SKF 525A가 휜쥐의 대동맥에서 Sodium nitroprusside, Acetylcholine, Pinacidil에 의한 이완반응에 미치는 효과)

  • 박조영;김학림;김주원;신창열;최윤미;김진학;안형수;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.44 no.1
    • /
    • pp.80-86
    • /
    • 2000
  • TEA, glibenclamide, L-NAME and SKF 525A-induced contraction were investigated using acetylcholine, sodium nitroprusside (SNP, NO donor) and pinacidil (ATP sensitive $K^{+}$ channel opener) in rat abdominal and thoracic aorta. The relaxant effects of acetylcholine, SNP and pinacidil were not different in the abdominal aorta and in the thoracic aorta. Acetylcholine-induced relaxation was dependent on endothelial cell, but pinacidil was independent endothelia cell. In the presence of TEA, glibenclamide, L-NAME, mepacrine and SKF 525A, acetylcholine and SNP did not change, but pinacidil-induced relaxation was significantly reduced in presence of glibenclamide, which is ATP sensitive $K^{+}$ channel blocker. SKF 525A, which is inhibitor of cytochrome P$_{450}$ dependent epoxygenase, partially inhibited the pinacidil-induced relaxation. These results indicate that the pinacidil-induced relaxation may be mediated by ATP sensitive $K^{+}$ channel and partially by EETs, which is produced by cytochrome P$_{450}$ dependent epoxygenase.enase.

  • PDF

Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon

  • Jiao, Han-Yi;Kim, Dong Hyun;Ki, Jung Suk;Ryu, Kwon Ho;Choi, Seok;Jun, Jae Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • Lubiprostone is a chloride ($Cl^-$) channel activator derived from prostaglandin $E_1$ and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid $EP_1$, $EP_2$, $EP_3$, and $EP_4$ antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [$K^+$] channel blocker) and apamin (a calcium [$Ca^{2+}$]-dependent $K^+$ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive $K^+$ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive $K^+$ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive $K^+$ channel through a prostanoid EP receptor-independent mechanism.

The Ca2+-activated K+ (BK) Channel-opener NS 1619 Prevents Hydrogen Peroxide-induced Cell Death and Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells (망막 색소상피세포에서 산화성 세포 손상과 미토콘드리아기능 저해에 미치는 NS 1619의 보호 효과)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1349-1356
    • /
    • 2017
  • Potassium channel openers (KCOs) produce physiological and pharmacological defense mechanisms against cell injuries caused by oxidative stress of diverse origins. Openings of mitochondrial and plasmalemmal $K^+$ channels are involved in the defense mechanisms. This study tested whether NS 1619, an opener of large-conductance BK channels, has a similar beneficial influence on the pigment epithelial cells of retinas. The human retinal pigment epithelial cell line ARPE-19 was exposed to $H_2O_2$-induced oxidative stress in the absence and presence of NS 1619. The degrees of the cells' injuries were assessed by analyzing the cells' trypan-blue exclusion abilities and TUNEL staining. NS 1619 produced remarkable protections against cell injuries caused by $H_2O_2$. It prevented apoptotic and necrotic cell deaths. The protective effect of NS 1619 was significantly diminished when the cells were treated with NS 1619 in combination with the BK channel-blocker paxilline. NS 1619 significantly ameliorated cellular ATP deprivations in $H_2O_2$-treated cells. It helped mitochondria preserve their functional integrity, which was estimated by their MTT reduction abilities and mitochondrial membrane potential. In conclusion, it was suggested that NS 1619 had a beneficial effect on mitochondria in regards to preserving their functional integrity under oxidative stress, and it produces defense mechanisms against oxidant-induced cell injuries in ARPE-19 cells.

Acute Toxicity of the BKCa Channel Opener LDD175

  • Choi, Ji-Young;Choi, Jong-Hyun;Lee, Geum-Seon;Ko, Hong-Sook;Park, Chul-Seung;Kim, Yong-Chul;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.253-258
    • /
    • 2006
  • LDD175(4-choloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-l-carboxylic acid) is one of benzofuroindole derivatives that act as a potent $BK_{Ca}$ channel openers. In the process of testing LDD175 as a new drug candidate, an acute toxicity study was carried out in mice. The mice were administered LDD175 intraperitoneally at dose of 0.2, 1, 10, 50, 100, 200, 400, 800mg/kg and orally at dose of 10, 100, 400, 800mg/kg body weight. After administering LDD175, the vital organs such as the liver, kidney and spleen were carefully observed for any significant pathological features or differences from the norm over a l4-day period. LDD175 did not induce any short-term toxicity at doses less than 100mg/kg. A $LD_{50}$ of LDD175 was 2493mg/kg in male mice and 4908mg/kg in female mice. Weight reduction was observed at a dose of 800mg/kg in male, and 400 and 800mg/kg in female. The kidney weight decreased in females after an intraperitoneal injection of LDD175 high dose(>400mg/kg, i.p.), and the spleen weight increased in the male(800mg/kg, i.p.) and female(400mg/kg, i.p.) mice. Inspite of the change in organ weights, there were neither histopathological changes nor any gross morphological abnormalities detected in any organ. LDD175 did not produce significant changes in the general behavior at doses of <200mg/kg, but decreased locomotor activity was observed at an intraperitoneal dose of 400mg/kg. Its effects on the locomotor activity and activity on the rotarod were tested and compared with the effects of diazepam 5mg/kg. The decrement in the locomotor activity and the activity on the rotarod induced by LDD175 was less serious than it by diazepam.

Insulin secretory activity and mechanism of compound K

  • Choi, Yun-Suk;Han, Gi-Cheol;Sung, Jong-Hwan;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2006.05a
    • /
    • pp.69-70
    • /
    • 2006
  • Purpose: Panaxadiols are more potent than panaxatriols as far as insulin secretory activity is concerned. In this study, we examined insulin secretory activity and mechanism of compound K (CK), a major intestinal bacterial metabolite of ginsenosides. Method: Insulin secretory activity of CK was examined using pancreatic beta cells and in Oral Glucose Tolerance Test assay. In addition, insulin secretory mechanism was studied in terms of calcium dependent or independent pathways. Results: In vitro, CK enhanced the insulin secretion concentration-dependently when compared to glucose-stimulated control cells. Insulin secretory mechanism of CK seems to block ATP sensitive K channels, which was confirmed by diazoxide (K channel opener) but, insulin resistance ameliorating activity of CK can't be ruled out. In vivo, CK showed hypoglycemic effect in OGTT.

  • PDF

Effects of Novel Potassium Channel Opener KR-30450 and its Metabolite KR-30818 on the Smooth, Muscle of the Guinea Pig

  • Jung, Yi-Sook;Moon, Chang-Hyun;Yoo, Sung-Eun;Shin, Hwa-Sup
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.373-377
    • /
    • 1996
  • The effect of potassium channel openers, KR-30450, KR-30818 and lemakalim have been compared against several spasmogens in guinea pig bronchi. In guinea pig bronchi, KR-30450 had a greater relaxant effect than lemakalim and KR-30818 against tone induced by histamine $10^{-5}M$ ($EC_{50}$ $\mu$M: KR-30450, 0.108$\pm$0.077; KR-30818, 0.403$\pm$0.023; lemakalim, 0.968$\pm$0.036) and prostaglandin $F_{2\alpha} 3\times10^{-6} M$ ($EC_{50}$ $\mu$M: KR-30450, 0.018$\pm$0.001; KR-30818, 0.028$\pm$0.003; lemakalim, 0.138$\pm$0.019). Relaxant effect of KR-30450 and KR-30818 were significantly reduced by 20 min pretreatment of tissues with $10^[-6}$ M glibenclamide, a selective blocker of ATP-sensitive potassium channel. Against acetylcholine-induced tone in guinea pig bronchi, however, these compounds had little effect. In summary, KR-30450 and KR-30818 showed greater relaxant effect than lemakalim in guinea pig bronchi (KR-30450>KR-30818>lemakalim). These relaxant actions are suggested to be mediated at least in part by a mechanism which involves the opening of ATP-sensitive potassium channel.

  • PDF

INFLUENCE OF PINACIDIL ON CATECHOLAMINE SECRETION EVOKED BY CHOLINERGIC STIMULATION AND MEMBRANE DEPOLARIZATION FROM THE RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Park, Geun-Hong;Choi, Cheol-Hee;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.148-149
    • /
    • 1998
  • It has been known that potassium channel openers are a new class of molecules that have attracted general interest because of their potent antihypertensive activity in vivo and vasorelaxant activity in vitro (Hamilton and Weston, 1989). In the present study, it was attempted to examine the effect of the potassium channel opener on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of pinacidil (30-300 uM) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $K^{+}$ (56 mM), DMPP (100 uM for 2 min), McN-A-343 (100 uM for 2 min), cyclopiazonic acid (10 uM for 4 min) and Bay-K-8644 (10 uM for 4 min). Also, under the presence of minoxidil (100 uM), which is also known to be a potassium channel activator, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with pinacidil (100 uM) under the presence of glibenclamide (1 uM), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were considerably recovered to a considerable extent of the normal release as compared to that of pinacidil only. These results, taken together, suggest that pinacidil cause the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings suggest strongly that these potassium channel openers-sensitive membrane potassium channels also play an important role in regulating CA secretion.

  • PDF