• 제목/요약/키워드: Jun N-terminal kinases

검색결과 121건 처리시간 0.023초

Fucus evanescens fucoidan의 matrix metalloproteinase-1 promoter, mRNA, 단백질 발현과 신호전달경로에 미치는 효과 (Effect of Fucus evanescens Fucoidan on Expression of Matrix Metalloproteinase-1 Promoter, mRNA, Protein and Signal Pathway)

  • 구미정;정지원;이명숙;조병규;이순례;이혜숙;;;;이용환
    • 생명과학회지
    • /
    • 제20권11호
    • /
    • pp.1603-1610
    • /
    • 2010
  • Fucoidan은 갈조류의 세포벽에 존재하는 황산화 다당류이다. 본 연구에서는 자외선 B를 인체각질형성세포에 조사하여 matrix metalloproteinase-1 (MMP-1)을 발현 시킨 후 Fucus evanescens fucoidan이 MMP-1 promoter, mRNA, 단백 발현과 mitogen-activated protein kinases (MAPKs)의 인산화에 미치는 영향을 확인하고자 하였다. 자외선 B에 의해 생성된 MMP-1의 promoter activity와 mRNA, 단백 발현은 fucoidan $10\;{\mu}g/ml$$100\;{\mu}g/ml$를 투여하였을 때 fucoidan을 투여하지 않고 자외선만 조사한 군에 비하여 유의하게 억제되었다. 그리고 F. evanescens fucoidan은 extracellular signal regulated kinase (ERK)의 활성은 현저히 억제시켰으나 c-JUN N-terminal kinase (JNK)와 p38의 활성에 미치는 영향은 약하였다. 따라서 이 연구결과들은 F. evanescens fucoidan이 피부 광노화의 예방과 치료에 도움이 될 가능성을 확인할 수 있었다.

Black soybean anthocyanins attenuate inflammatory responses by suppressing reactive oxygen species production and mitogen activated protein kinases signaling in lipopolysaccharide-stimulated macrophages

  • Kim, Jin Nam;Han, Sung Nim;Ha, Tae Joung;Kim, Hye-Kyeong
    • Nutrition Research and Practice
    • /
    • 제11권5호
    • /
    • pp.357-364
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Oxidative stress is closely related with inflammation and development of many diseases. Black soybean seed coat contains high amount of anthocyanins, which are well-known for free radical scavenging activities. This study investigated inflammatory response and action mechanism of black soybean anthocyanins with regard to antioxidant activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS: RAW 264.7 cells were treated with anthocyanins extracted from black soybean seed coats in a concentration range of 12.5 to $100{\mu}g/mL$. The production of reactive oxygen species (ROS), secretion of pro-inflammatory mediators and cytokines, and the signaling in the mitogen activated protein kinases (MAPKs) pathway were examined. RESULTS: Black soybean anthocyanins significantly decreased LPS-stimulated production of ROS, inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$, and pro-inflammatory cytokines, including tumor necrosis factor ${\alpha}$ and interleukin-6, in a dose-dependent manner without cytotoxicity (P < 0.001). Black soybean anthocyanins downregulated the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells (P < 0.001). Moreover, black soybean anthocyanins inhibited LPS-induced phosphorylation of MAPKs, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 (P < 0.001). CONCLUSION: These results suggest that black soybean anthocyanins exert anti-inflammatory activity by inhibiting ROS generation and subsequent MAPKs signaling, thereby inhibiting inflammatory responses.

Mannosylerythritol lipids ameliorate ultraviolet A-induced aquaporin-3 downregulation by suppressing c-Jun N-terminal kinase phosphorylation in cultured human keratinocytes

  • Bae, Il-Hong;Lee, Sung Hoon;Oh, Soojung;Choi, Hyeongwon;Marinho, Paulo A.;Yoo, Jae Won;Ko, Jae Young;Lee, Eun-Soo;Lee, Tae Ryong;Lee, Chang Seok;Kim, Dae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.113-120
    • /
    • 2019
  • Mannosylerythritol lipids (MELs) are glycolipids and have several pharmacological efficacies. MELs also show skin-moisturizing efficacy through a yet-unknown underlying mechanism. Aquaporin-3 (AQP3) is a membrane protein that contributes to the water homeostasis of the epidermis, and decreased AQP3 expression following ultraviolet (UV)-irradiation of the skin is associated with reduced skin moisture. No previous study has examined whether the skin-moisturizing effect of MELs might act through the modulation of AQP3 expression. Here, we report for the first time that MELs ameliorate the UVA-induced downregulation of AQP3 in cultured human epidermal keratinocytes (HaCaT keratinocytes). Our results revealed that UVA irradiation decreases AQP3 expression at the protein and messenger RNA (mRNA) levels, but that MEL treatment significantly ameliorated these effects. Our mitogen-activated protein kinase inhibitor analysis revealed that phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, mediates UVA-induced AQP3 downregulation, and that MEL treatment significantly suppressed the UVA-induced phosphorylation of JNK. To explore a possible mechanism, we tested whether MELs could regulate the expression of peroxidase proliferator-activated receptor gamma ($PPAR-{\gamma}$), which acts as a potent transcription factor for AQP3 expression. Interestingly, UVA irradiation significantly inhibited the mRNA expression of $PPAR-{\gamma}$ in HaCaT keratinocytes, whereas a JNK inhibitor and MELs significantly rescued this effect. Taken together, these findings suggest that MELs ameliorate UVA-induced AQP3 downregulation in HaCaT keratinocytes by suppressing JNK activation to block the decrease of $PPAR-{\gamma}$. Collectively, our findings suggest that MELs can be used as a potential ingredient that modulates AQP3 expression to improve skin moisturization following UVA irradiation-induced damage.

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

흰점박이꽃무지 유충 추출물의 RAW264.7 세포 활성화에서 TLR4-JNK/NF-κB 신호전달 경로의 관여 (Involvement of TLR4-JNK/NF-κB signaling pathway in RAW264.7 cell activation of Protaetia brevitarsis seulensis larvae extracts)

  • 박주휘;채종범;이준하;한동엽;남주옥
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.447-454
    • /
    • 2023
  • 인간이 살아가는 환경에는 인체에 침입하여 건강한 삶을 영위하는 것을 방해하는 다양한 항원들이 존재하며, 면역 체계는 복잡한 기전을 통하여 이를 인식하고 제거한다. 대식세포는 선천 면역체계에 관연하는 면역세포로 체내 널리 분포하고 있으며, inducible nitric oxide synthase로 유도된 산화질소, cyclooxygenase-2로 유도된 prostaglandin E2 그리고 tumor necrosis factor-alpha 등의 전염증성 사이토카인 같은 다양한 면역 조절 물질을 생산한다. 흰점박이꽃무지유충은 미래 식량 수급 문제에 대한 대안으로 등장한 식용 곤충의 일종으로, 기존 mitogen activated protein kinases 및 nuclear factor-kappa B (NF-κB) 신호전달 경로를 경유하는 RAW264.7 대식세포의 활성화를 통한 면역 조절 효과가 보고되었다. 본 연구에서는 RAW264.7 세포에서 흰점박이꽃무지유충 추출물에 의해 유도된 면역 조절 물질의 발현이 toll-like receptor 4, mitogen activated protein kinases 및 nuclear factor-kappa B 신호전달 경로의 약리학적 억제제에 의해 어떻게 변화되었는지 확인하였다. 그 결과, 흰점박이꽃무지유충 처리에 의해 증가된 면역 조절 물질의 발현이 c-Jun N-terminal kinase (JNK) 억제제 및 NF-κB 억제제 처리에 의해 감소하는 것을 확인하였다. 또한, toll-like receptor 4(TLR4) 억제제 처리에 의해서는 흰점박이꽃무지유충 추출물 처리에 의해 증가된 면역 조절 물질의 발현과 JNK 및 NF-κB의 인산화 감소를 확인하였다. 우리의 이러한 연구는 흰점박이꽃무지유충이 TLR4-JNK/NF-κB 신호전달의 관여에 의해 RAW264.7 세포를 활성화하는 것을 시사한다.

JNK activation induced by ribotoxic stress is initiated from 80S monosomes but not polysomes

  • Kim, Tae-Sung;Kim, Hag Dong;Park, Yong Jun;Kong, EunBin;Yang, Hee Woong;Jung, Youjin;Kim, YongJoong;Kim, Joon
    • BMB Reports
    • /
    • 제52권8호
    • /
    • pp.502-507
    • /
    • 2019
  • Translation is a costly, but inevitable, cell maintenance process. To reduce unnecessary ATP consumption in cells, a fine-tuning mechanism is needed for both ribosome biogenesis and translation. Previous studies have suggested that the ribosome functions as a hub for many cellular signals such as ribotoxic stress response, mammalian target of rapamycin (mTOR), and ribosomal S6 kinase (RSK) signaling. Therefore, we investigated the relationship between ribosomes and mitogen-activated protein kinase (MAPK) activation under ribotoxic stress conditions and found that the activation of c-Jun N-terminal kinases (JNKs) was suppressed by ribosomal protein knockdown but that of p38 was not. In addition, we found that JNK activation is driven by the association of inactive JNK in the 80S monosomes rather than the polysomes. Overall, these data suggest that the activation of JNKs by ribotoxic stress is attributable to 80S monosomes. These 80S monosomes are active ribosomes that are ready to initiate protein translation, rather than polysomes that are already acting ribosomes involved in translation elongation.

The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

  • Jeon, Bo Ra;Kim, Su Jung;Hong, Seung Bok;Park, Hwa-Jin;Cho, Jae Youl;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.279-285
    • /
    • 2015
  • Background: Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng's therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods: The platelet aggregation was induced by collagen, the ligand of integrin ${\alpha}_{II}{\beta}_I$ and glycoprotein VI. The crude saponin's effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin ${\alpha}_{II}b{\beta}_{III}$ was examined by fluorocytometry. Results: CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed $[Ca^{2+}]_i$ mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin ${\alpha}_{IIb}{\beta}_3$. Conclusion: Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function.

Aloe-Emodin Induces Chondrogenic Differentiation of ATDC5 Cells via MAP Kinases and BMP-2 Signaling Pathways

  • Yang, Ming;Li, Liang;Heo, Seok-Mo;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.395-401
    • /
    • 2016
  • Endochondral bone formation is the process by which mesenchymal cells condense into chondrocytes, which are ultimately responsible for new bone formation. The processes of chondrogenic differentiation and hypertrophy are critical for bone formation and are therefore highly regulated. The present study was designed to investigate the effect of aloe-emodin on chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Aloe-emodin treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. ATDC5 cells were treated with aloe-emodin and stained with alcian blue. Compared with the control cells, the ATDC5 cells showed more intense alcian blue staining. This finding suggested that aloe-emodin induced the synthesis of matrix proteoglycans and increased the activity of alkaline phosphatase. Aloe-emodin also enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, BSP and RunX2 in a time-dependent manner. Furthermore, examination of the MAPK signaling pathway showed that aloe-emodin increased the activation of extracellular signal-regulated kinase (ERK), but had no effect on p38 and c-jun N-terminal kinase (JNK). Aloe-emodin also enhanced the protein expression of BMP-2 in a time-dependent manner. Thus, these results showed that aloe-emodin exhibited chodromodulating effects via the BMP-2 or ERK signaling pathway. Aloe-emodin may have potential future applications for the treatment of growth disorders.

Lipoteichoic Acid Isolated from Weissella cibaria Increases Cytokine Production in Human Monocyte-Like THP-1 Cells and Mouse Splenocytes

  • Hong, Yi-Fan;Lee, Yoon-Doo;Park, Jae-Yeon;Kim, Seongjae;Lee, Youn-Woo;Jeon, Boram;Jagdish, Deepa;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1198-1205
    • /
    • 2016
  • Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heat-killed W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • 제21권6호
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.