• 제목/요약/키워드: Joystick Control

검색결과 114건 처리시간 0.032초

이동로봇 원격조작를 위한 인터넷기반 제어시스템에 관한 연구 (A Study of the Teleoperation for Mobile Robots based on Internet)

  • 노영식;강희준;정기수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1983-1986
    • /
    • 2006
  • In this paper, we construct the infrastructure for the teleoperating system of mobile robots. For the stable teleoperating system, we develope an algorithm that measure communication time delay on real-time. We propose the force-reflected teleoperation method that control the stiffness of joystick according to VFH(Vector Field Histogram). Also, an obstacle avoidance method using VFH is presented for the mobile robot to move to the indicated direction without collision. Experiments are conducted to demonstrate the feasibility of the proposed methods.

  • PDF

Multi-Camera Vision System for Tele-Robotics

  • Park, Changhwn;Kohtaro Ohba;Park, Kyihwan;Sayaka Odano;Hisayaki Sasaki;Nakyoung Chong;Tetsuo Kotoku;Kazuo Tanie
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.25.6-25
    • /
    • 2001
  • A new monitoring system is proposed to give direct visual information of the remote site when working with a tele-operation system. In order to have a similar behavior of a human when he is inspecting an object, multiple cameras that have different view point are attached around the robot hand and are switched on and elf according to the operator´s motion such as joystick manipulation or operator´s head movement. The performance of the system is estimated by performing comparison experiments among single camera (SC) vision system, head mount display (HMD)system and proposed multiple camera (MC) vision system by applying a task to several examines. The reality, depth feeling and controllability are estimated for the examines ...

  • PDF

수중항만공사 기계화 시공을 위한 로봇 개발 (Development of Robot for the Mechanized Construction of Underwater Harbor)

  • 박근우;김태성;정진욱;김용희;이민기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1781-1786
    • /
    • 2003
  • This research develops a robot as the device which constructs underwater harbour. This construction is to build a breakwater, which is dangerous and difficult. The hydraulic parallel mechanism-typed robot is developed to mechanize the construction by operating of a stoneworker (or diver) through a joystick. The six-dof robot is able to carry 2-3 tons' heavy stone and put it on the surface of breakwater. This paper presents the mechanical design of a miniature robot, its control and application for the breakwater construction.

  • PDF

대화면 FPS 게임을 위한 레이저센서기반의 대형스크린과 레이저광원 권총의 설계와 구현 (Laser-recognizable Screen and Gun with Laser Source for Realistic Big Screen First Person Shooters Games)

  • 한녹손;김성환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.481-484
    • /
    • 2008
  • In this paper, we present a new game interface design for First Person Shooters (FPS). Previously, FPS on computer is commonly played using keyboard/mouse or joystick along with PC display. We improve the communication environment between player and game world by means of new control system including large screen and laser gun, which create a real life-like space for players. Because traditional display for FPS uses CRT, it cannot support large screen display due to limitation of CRT technology. We designed and implemented a new input device using laser recognizable display. Results suggest that the combined interface creates a method which helps beginners to enjoy playing a FPS immediately and gives experienced players a new gaming experience.

대화면 FPS 게임을 위한 새로운 레이저기반 입력장치 (New Input Device for Large Screen First Person Shooter Games)

  • 한녹손;김성환;박인규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.183-186
    • /
    • 2007
  • In this paper, we present a new game interface design for First Person Shooters (FPS). Previously, FPSs on computer are commonly played using keyboard/mouse or joystick along with PC display. We improve the communication environment between player and game world by means of new control system including large screen, laser gun, and directional device, which create a real life-like space for players. Because traditional display for FPS uses CRT, it cannot support large screen display due to limitation of CRT technology. We designed and implemented a new input device using laser recognizable display. We implemented a new FPS based on Quake III that is in accordance with the new devices. Results suggest that the combined interface creates a method which helps beginners to enjoy playing a FPS immediately and gives experienced players a new gaming experience.

병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석 (Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism)

  • 윤정원;류제하
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

Development of a Mobile Robot System for Visual Inspection under Hot Environment

  • Park, Sang-Deok;Lee, Ho-Gil;Kim, Hong-Seok;Son, Woong-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1506-1510
    • /
    • 2004
  • A mobile robot system is developed to inspect the condition of industrial facilities under hot environment. The mobile robot is equipped with internal and external heat insulating material, an internal cooling mechanism, two CCD cameras, wireless communication devices for both the control and image signals, and an embedded controller. The portable controller is equipped with two joysticks for both the mobile robot and the inspection CCD camera, an LCD monitor, and several buttons. The developed mobile robot travels on the internal floor in hot furnaces by operators' joystick operation, captures the images of facilities in the furnaces using a zoom CCD camera, and sends the images to the portable controller through wireless communication. The mobile robot can be operated without any problem under hot environment less than 400$^{\circ}C$ in 30 minutes. This kind of automatic inspection mobile robot can be helpful to prevent significant troubles of industrial facilities without danger of human beings under harmful environment.

  • PDF

수중항만공사용 로봇의 센서리스 유압 서보 시스템 개발 (Development of Sensorless Hydraulic Servo System for Underwater Harbor Construction)

  • 김태성;김치효;박근우;이민기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.708-713
    • /
    • 2004
  • This research develops a sensorless hydraulic servo system of Parallel-Typed robot for harbour construction. Purpose of the robot is to mechanize the construction, which is accomplished through a joystick's operating by a stoneworker (or diver). The robot is attached on the end of an excavator as its attachment or transported by a crane to reach the desired place. The embedded compact controller is installed on the robot body and controlled by wireless telecommunication. For underwater work, it is necessary to waterproof the robot and its sensors. Especially, a sensor waterproof is a main drawback for the underwater robot. This leads us to develop a hydraulic robot position controller using an observer which gives the position information without any position sensor. We design a neural network to identify the displacement change according to the command voltage to servo valve. To verify the sensorless controller, this paper presents the performance of the sensorless control for which the position is given by the observer comparing with that of the sensor control for which the position is measured by LVDT sensors.

  • PDF

굴삭기를 이용한 해체 장비용 원격 조종 장치 설계 (Design of a Remote Controller for Dismantling Processes Using Excavator)

  • 김동남;오경원;홍대희;박종협;홍석희
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.95-102
    • /
    • 2008
  • Since the processes of dismantling are very dangerous, there have been many studies to develop remote operating devices using joystick. In this paper, in order to improve the operability of the dismantling equipment that is usually an excavator, a novel concept of tole-operated device is proposed. Operators who use this device with additional environmental sensing devices can work safely away from the dangerous sites. First, based on the concept design of the remote controller, its workspace is analyzed and the workspace mapping from the device to the excavator is explored. Second, after 7 steps of the excavating processes are defined, the kinematics which deals with the conversion from the 3 dimensional position information of the device to the joint variable information of the backhoe is included in this paper. Lastly, 3D graphical simulation of both remote controller and the backhoe will be shown. This new design of the remote control device tan be easily manufactured and gives the workers very convenient and transparent remote control capability.

ROS를 이용한 이동 로봇 제어 시스템 구현 (An Implementation of the Control System of the Mobile Robot using ROS)

  • 문용선;노상현;임승우;배영철
    • 한국전자통신학회논문지
    • /
    • 제8권11호
    • /
    • pp.1713-1718
    • /
    • 2013
  • 본 논문은 로봇 미들웨어 기술 중 ROS(Robot Operating System)를 이용하여 이동 로봇의 원격 제어 및 인공전위계를 이용한 충돌회피를 구현하였으며, 충돌회피 노드에 동적 재구성(dynamic reconfigure)을 적용하였다. 또한 ROS의 주된 목적인 공유와 협업에 맞게 LRF와 조이스틱과 같은 로봇에 자주 사용되는 하드웨어를 ROS에서 제공하는 노드로서 재사용하였다.