• Title/Summary/Keyword: Journalling

Search Result 2, Processing Time 0.016 seconds

Development of WLAN AP based on IBM 405GP (IBM PowerPC 405GP를 이용한 Wireless LAN Access Point 개발에 관한 연구)

  • Kim Do-Gyu
    • The Journal of Information Technology
    • /
    • v.6 no.3
    • /
    • pp.65-73
    • /
    • 2003
  • The evaluation AP embedded Linux board is implemented. The board is made of IBM 405 GP processor, PPCBoot-1.2.1 boot loader, Linux-2.4.21 kernel and root file system. The evaluation board has two flash memories, boot flash and application flash of size 512Kbyte and 16Mbyte, respectively. And it supports IEEE 802.11a which provide the maximum throughput of 54Mbps in the 5.2GHz frequency band. MTD(Memory Technology Device) and JFFS2(Journalling Flash File System version 2) technologies are adopted to optimally package the system software, boot loader, kernel and root file system. And in order to optimize root file system, busybox package and tiny login are used. Linux kernel and root file system is combined together with mkimage utility.

  • PDF

RFFS : Design of a Reliable NAND Flash File System for Embedded system (임베디드 시스템을 위한 신뢰성 있는 NAND 플래시 파일 시스템의 설계)

  • Lee Tae-hoon;Park Song-hwa;Kim Tae-hoon;Lee Sang-gi;Lee Joo-Kyong;Chung Ki-Dong
    • The KIPS Transactions:PartA
    • /
    • v.12A no.7 s.97
    • /
    • pp.571-582
    • /
    • 2005
  • NAND flash memory has advantages of non-volatility, little power consumption and fast access time. However, it suffers from inability that dose not provide to update-in-place and the erase cycle is limited. Moreover, the unit of read and write operations is a page. A NAND flash file system called YAFFS has been proposed. But YAFFS has several problems to be addressed. In this paper, the Reliable Flash File System(RFFS) for NAND flash memory is designed and evaluated. In designing a file system the following four issues must be considered in particular for the design: (i) to minimize a repairing time when the system fault occurs, (ii) to balance the number of block erase operations by offering wear leveling policy, and (iii) to reduce turnaround time of memory operations by reducing the amount of data written. We demonstrate and evaluate the performance of the proposed schemes.