• 제목/요약/키워드: Journal-topic matrix(JTM)

검색결과 1건 처리시간 0.016초

잠재디리클레할당을 이용한 한국학술지인용색인의 풍력에너지 문헌검토 (Review of Wind Energy Publications in Korea Citation Index using Latent Dirichlet Allocation)

  • 김현구;이제현;오명찬
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.33-40
    • /
    • 2020
  • The research topics of more than 1,900 wind energy papers registered in the Korean Journal Citation Index (KCI) were modeled into 25 topics using latent directory allocation (LDA), and their consistency was cross-validated through principal component analysis (PCA) of the document word matrix. Key research topics in the wind energy field were identified as "offshore, wind farm," "blade, design," "generator, voltage, control," 'dynamic, load, noise," and "performance test." As a new method to determine the similarity between research topics in journals, a systematic evaluation method was proposed to analyze the correlation between topics by constructing a journal-topic matrix (JTM) and clustering them based on topic similarity between journals. By evaluating 24 journals that published more than 20 wind energy papers, it was confirmed that they were classified into meaningful clusters of mechanical engineering, electrical engineering, marine engineering, and renewable energy. It is expected that the proposed systematic method can be applied to the evaluation of the specificity of subsequent journals.