• Title/Summary/Keyword: Journal of the Korean Nuclear Society

Search Result 15,448, Processing Time 0.041 seconds

iKSNF, the Control Tower for the R&D Program of SNF Storage and Disposal

  • Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.255-258
    • /
    • 2022
  • Three government bodies, that is, the Ministry of Science and ICT (MSIT), Ministry of Trade, Industry, and Energy (MOTIE), and Nuclear Safety and Security (NSSC), jointly established the Institute for Korea Spent Nuclear Fuel (iKSNF) in December 2020 to secure the management technologies for spent nuclear fuel (SNF). The objective of iKSNF is to successfully conduct the long-term research and development program of the 「Development of Core Technologies to Ensure Safety of Spent Nuclear Fuel Storage and Disposal System」. Our program, known as the first multi-ministry program in the nuclear field of Korea, mainly focuses on developing core technologies required for the long-term management of SNF, including those for safe storage and deep geological disposal of SNF. The program comprises three subprograms and seven key projects covering the storage, disposal, and regulatory sectors of SNF management. Our program will last from 2021 through 2029, with a budget of approximately four billion USD sponsored by MSIT, MOTIE, and NSSC.

The Significance of Nuclear Size in Nuclear Grade of Invasive Ductal Carcinoma of the Breast (유방의 침윤성 관암종에서 핵등급 기준으로서 핵크기의 의의)

  • Bae, Young-Kyung;Kim, Dong-Sug;Choi, Hye-Juug;Gu, Mi-Jin;Lee, Soo-Jung;Lee, Jea-Young
    • The Korean Journal of Cytopathology
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 1999
  • To make the objective standard of nuclear size ingrading nuclear pleomorphism of invasive ductal carcinoma of the breast, we measured maximal nuclear diameter of tumor cells on imprint cytology slides and histologic sections from 65 cases by using computer-based image analysis system(Optimas 6.0). The maximal diameter of red blood cells were also measured to evaluate the ratio of maximal nuclear diameter of tumor cells to maximal diameter of red blood cells. The mean values of maximal nuclear diameter of tumor cells on imprint cytology slides and histologic sections were $7.56{\mu}m,\;7.53{\mu}m$ in nuclear grade 1, $8.92{\pm}0.98{\mu}m,\;9.02{\pm}0.74{\mu}m$ in nuclear grade 2, and $12.90{\pm}1.47{\mu}m,\;12.44{\pm}1.41{\mu}m$ in nuclear grade 3, respectively. There were no significant differences between values of imprint cytology and histologic section. The ratio of maximal nuclear diameter of tumor cells to maximal diameter of red blood cells were 1.3-1.4:1 in nuclear grade 1, 1.6-1.7:1 in nuclear grade 2, and 2.2-2.3:1 in nuclear grade 3. These values would be guidelines for grading nuclear pleomorphism of invasive ductal carcinoma of the breast on routine surgical pathology work.

  • PDF

Structural integrity of KJRR-F fresh nuclear fuel under vehicle-induced vibration for normal transport condition

  • Jeong, Gil-Eon;Yang, Yun-Young;Bang, Kyoung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1355-1362
    • /
    • 2022
  • Nuclear fuel, including its fresh state, must be handled safely due to its critical and hazardous nature. Under normal transport conditions, several interactions take place among different components, such as transport cask used for loading the nuclear fuel and tie-down structure to attach with the vehicle. To ensure structural integrity of the nuclear fuel, vibrations and impacts transmitted from the vehicle must be sufficiently reduced. Therefore, in this study, we conducted two transportation tests from Daejeon to Kijang in Korea to verify the vehicle-induced vibrational characteristics of the KJRR-F fresh nuclear fuel when transported under normal transport conditions. The speed and location of the vehicle were obtained via GPS, and the accelerations between the vehicle and the KJRR-F fresh nuclear fuel were measured. Additionally, using the acceleration results, a structural analysis was conducted to confirm the structural integrity of the nuclear fuel under the most severe conditions during normal transport.

Long Term Trend of Uranium Production and Price

  • Hye-Jin Son;Su-Hyun Kang;Jong-Pil Jung;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.295-301
    • /
    • 2023
  • To broaden the utilization of nuclear energy, uranium as a fuel should be mined indispensably. Mining accounts for the largest portion of the cost of producing the uranium assembly. Therefore, this study analyzes the trends of uranium prices, which have a significant impacts on the mining cost. Uranium production contributing to the price fluctuations is explained in five periods from 1945 to the present. Moreover, the series of events affecting uranium prices from the 1970s until the present are verified. Among them, the most recent incidents considered in this study are the following: COVID-19 pandemic, Kazakhstan unrest, and Russia-Ukraine war. European countries have started to reconsider the transition to nuclear power to reduce their dependence on Russian oil and gas, which has contributed to the surge in uranium prices. Based on the results of this study, various international issues have been closely associated with the nuclear power industry and uranium, affecting the production of uranium and its price.

Administrative dose control for occupationally-exposed workers in Korean nuclear power plants

  • Kong, Tae Young;Kim, Si Young;Jung, Yoonhee;Kim, Jeong Mi;Cho, Moonhyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.351-356
    • /
    • 2021
  • Korean nuclear power plants (NPPs) have various radiation protection programs to attain radiation exposure as low as reasonably achievable (ALARA). In terms of ALARA, this paper provides a comprehensive overview of administrative dose control for occupationally-exposed workers in Korean NPPs. In addition to dose limits, administrative dose constraints are implemented to resolve an inequity of radiation exposure in which some individuals in NPPs receive relatively higher doses than others. Occupational dose constraints in Korean NPPs are presented in this paper with the background of how those values were determined. For pressurized water reactors, 80% and 90% of the annual average limit for an effective dose, 20 mSv/y, are set as the primary and secondary dose constraints, respectively. Pressurized heavy water reactors (PHWRs) have also established the primary and secondary dose constraints corresponding to 70% and 80% of the effective dose limit, and additional constraints for tritium concentration are provided to control internal exposure in PHWRs. Follow-up measures for exceeding these administrative dose constraints are also introduced compared to exceeding the dose limits. Finally, analysis results of dose distributions show how the implementation of administrative dose constraints impacted the occupational dose distributions in Korean NPPs during the years 2009-2018.

Recent Developments in Nuclear Forensic and Nuclear Safeguards Analysis Using Mass Spectrometry

  • Song, Kyuseok;Park, Jong-Ho;Lee, Chi-Gyu;Han, Sun-Ho
    • Mass Spectrometry Letters
    • /
    • v.7 no.2
    • /
    • pp.31-40
    • /
    • 2016
  • The analysis of nuclear materials and environmental samples is an important issue in nuclear safeguards and nuclear forensics. An analysis technique for safeguard samples has been developed for the detection of undeclared nuclear activities and verification of declared nuclear activities, while nuclear forensics has been developed to trace the origins and intended use of illicitly trafficked nuclear or radioactive materials. In these two analytical techniques, mass spectrometry has played an important role in determining the isotope ratio of various nuclides, contents of trace elements, and production dates. These two techniques typically use similar analytical instruments, but the analytical procedure and the interpretation of analytical results differ depending on the analytical purpose. The isotopic ratio of the samples is considered the most important result in an environmental sample analysis, while age dating and impurity analysis may also be important for nuclear forensics. In this review, important aspects of these techniques are compared and the role of mass spectrometry, along with recent progress in related technologies, are discussed.

Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

  • Chang, Choong-Koo;Hassan, Mostafa Ahmed Fouad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.211-217
    • /
    • 2016
  • Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV) high resistance grounding (HRG) system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

Differential die-away technology applied to detect special nuclear materials

  • Lianjun Zhang;Mengjiao Tang;Chen Zhang;Yulai Zheng;Yong Li;Chao Liu;Qiang Wang;Guobao Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2483-2488
    • /
    • 2023
  • Differential die-away analysis (DDAA) technology is a special nuclear material (SNM) active detection analysis technology. Be a nuclear material shielded or not, the technology can reveal the existence of nuclear materials by inducing fission from an external pulsed neutron source. In this paper, a detection model based on DDAA analysis technology was established by geant4 Monte Carlo simulation software, and the optimal sensitivity of the detection system is achieved by optimizing different configurations. After the geant4 simulation and optimization, a prototype was established, and experimental research was carried out. The result shows that the prototype can detect 200 g of 235U in a steel cylinder shield that's of 1.5 cm in inner diameter, 10 cm in thickness and 280 kg in weight.

Nuclear Medicine Imaging Instrumentations for Molecular Imaging (분자영상 획득을 위한 핵의학 영상기기)

  • Chung, Yong-Hyun;Song, Tae-Yong;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.131-139
    • /
    • 2004
  • Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging.

An Analysis of Constraints on Pyroprocessing Technology Development in ROK Under the US Nonproliferation Policy

  • Jae Soo Ryu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.383-395
    • /
    • 2023
  • Since 1997, the Republic of Korea (ROK) has been developing pyro-processing (Pyro) technology to reduce the disposal burden of high-level radioactive waste by recycling spent nuclear fuel (SNF). Compared to plutonium and uranium extraction process, Korean Pyro technology has relatively excellent proliferation resistance that cannot separate pure plutonium owing to its intrinsic characteristics. Regarding Pyro technology development of ROK, the Bush administration considered that Pyro is not reprocessing under the Global Nuclear Energy Partnership, whereas the Obama administration considered that Pyro is subject to reprocessing. However, the Bush and Obama administrations did not allow ROK to conduct full Pyro activities using SNF, even though ROK had faithfully complied with international nonproliferation obligations. This is because the US nuclear nonproliferation policy to prevent the spread of sensitive technologies, such as enrichment and reprocessing, has a strong effect on ROK, unlike Japan, on a bilateral level beyond the NPT regime for non-proliferation of nuclear weapons.