• Title/Summary/Keyword: Journal Bearings

Search Result 1,230, Processing Time 0.026 seconds

The Static Equivalent Radial Load under the Moment and Radial Force for the Deep Groove Ball Bearings (모멘트 하중을 고려한 깊은 홈 볼 베어링의 정등가 하중에 관한 연구)

  • 이재선;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.94-99
    • /
    • 1998
  • Generally not only the radial load but also the moment may be applied to the ball bearings for a shaft system. However it has been difficult to determine the static equivalent load because there is the radial static equivalent equation only for the axial and radial force on the bearings. In this paper, the same static equivalent radial load which makes the maximum contact force at the interface between the ball and groove as the applied radial force and moment generate is calculated under the condition that the radial force and the moment are applied to the bearings simultaneously. The relation between the static equivalent load and applied force is studied. Therefore the simple and effective equation for the static equivalent radial load of the radial load and moment is proposed for the deep groove ball bearings.

Sound Field Analysis of Cylindrical Roller Bearings Under Radial Load (반경 방향 하중을 받는 원통형 로울러 베어링의 음장 해석)

  • Rho Byoung-Hoo;Kim Dae-Gon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.77-83
    • /
    • 2004
  • The purpose of the paper is to numerically investigate the acoustic noise characteristics of cylindrical roller bearings under radial load. For the sake of simplifying of the analysis, it was assumed that the cylindrical roller bearings are infinitely long. Furthermore, the effects of following on the noise of the bearing were also examined: the radial clearance of the bearing, the viscosity of the lubricant, and the number of the rollers. The results and discussions of the present paper could aid in the design of low-noise cylindrical roller bearings.

A Study on the Performances of Hydrodynamic Air Lubricated Thrust Bearings of Several Types (여러가지 형식의 동압 공기 윤활 스러스트 베어링의 성능에 대한 연구)

  • Kang, Ji-Hoon;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.364-370
    • /
    • 2002
  • In this paper, numerical analyses were undertaken to calculate the static and dynamic performances of step-pocket, inward pumping spiral grooved, outward pumping spiral grooved and herringbone grooved bearings. For each bearing, optimal values for various design parameters were obtained to maximize the load capacity and the stiffness and bearing performances were calculated. The optimized performances of these bearings were compared to conclude that the performance of step-pocket bearing is better than the other bearings.

Frictional Characteristics of Water-lubricated Stainless Steel Ball Bearing (스테인레스강 볼베어링의 수윤활 마찰 특성)

  • 이재선;김종인;김지호;박홍윤;지성균
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.140-144
    • /
    • 2004
  • Water-lubrication ball bearings are required to install in aqueous medium where water is used as coolant or working fluid. However water-lubricated frictional characteristics of stainless steel ball bearing is not will known compared to oil-lubricated frictional characteristics. Furthermore study on friction at high temperature is rare because bearing maintenance strategy for water-lubricated or chemicals-lubricated bearings of equipment is mostly based on change of failed bearings and parts. Ball bearings and ball screws are used to transmit power in the control rod drive mechanism for an integral reactor and are lubricated with high temperature and high pressure chemically-controlled water. Bearings and power transmitting mechanical elements for a nuclear reactor require high reliability and high performance during estimated lifetime, and their performance should be verified. In this paper, experimental research results of frictional characteristics of water-lubricated ball bearing are reported.

Effects of the nonlinear behavior of lead-rubber bearings on the seismic response of bridges

  • Olmos, B.A.;Roesset, J.M.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.215-230
    • /
    • 2010
  • The main objectives of this work were to investigate the effects of the nonlinear behavior of the isolation pads on the seismic response of bridges with rubber bearings, and to identify when base isolation improved their seismic performance. To achieve these objectives a parametric study was conducted designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (accelerations, displacements and pier seismic forces) were evaluated for three different structural models subjected to three earthquakes with different dynamic characteristics. The first represented bridges without base isolation; the second corresponded to the same bridges including now rubber bearings as an isolation system, with linear elastic behavior that shifted the natural period of the bridge by a factor of 2 to 4. In the third model the seismic response of bridges supported on lead-Rubber bearings was studied accounting for the nonlinear behavior of the lead. The results show clearly the importance of the nonlinear behavior on the seismic performance of the bridges.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

A Study on the Vibration Control Using Magnetic Bearings of the Flexible Shaft Supported by Hydrodynamic Bearings (동수압 베어링으로 지지되는 연성축의 자기 베어링을 이용한 진동제어에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.43-50
    • /
    • 1994
  • The hydrodynamic bearing is accepted in many rotating systems because it has a large load carrying capacity. But the anisotropic pressure distribution of the bearing can arise the unstable vibration phenomenon over a certain speed. The magnetic bearing is an active element so that the unstable phenomenon of the hydrodynamic bearing, which is induced by the anisotropic support pressure of the oil film, can be controlled if the control algorithm and the controller gains are chosen appropriately. In this study, we investigate the stabilization method of the hydrodynamic bearing system composing the hybrid bearing which is the single unit of hydrodynamic bearing and magnetic bearing. The load carrying conditions of the hybrid bearing is modelled by the sum of the stiffness and damping coefficients of the hydrodynamic and the magnetic bearings in each direction. The dynamics of the rotor is analyzed by the Finite Element Method and the stability limit is determined by the eigenvalues of the hybrid bearings and shaft system. The eigenvalue study of the system shows that the stability limit of the hybrid bearing is increased compared to that of the hydrodynamic bearing. A Small increment of the stiffness and damping coefficient of the hybrid bearings by the magnetic actuators can increase the stability limit of the system. In this paper we tried to show the design references of the hybrid bearings by using the nondimensional bearing parameters. The analysis results show the possibilities of the stability limit increment of the hydrodynamic bearing system by combining the magnetic bearing.

Vibration Characteristics According to Wear Progress of Ball Bearings (볼 베어링의 마멸 상태에 따른 진동 특성의 변화)

  • Cho, SangKyung;Park, JoungWoo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.141-147
    • /
    • 2017
  • The vibration data of bearings are very useful for monitoring and determining the condition of the bearings. The defect frequencies of ball bearings have been used for monitoring there condition. However, it is not easy to verify the defect frequencies as the wear progress. Therefore there is a need for an easy method to monitor the damages of bearings in real-time and to observe the variations in vibration characteristics as the wear progress. In this study, a bearing test equipment is constructed to diagnose the damage of bearings. The friction coefficient and vibration data are measured by using a torque sensor and an acceleration sensor, and the correlation between the measured data is analyzed to diagnose the condition of the bearing. We reached the following conclusions from the results. When the ball surface, inner and outer rings of a ball bearing are damaged, the friction coefficient increases to over 0.02 with an adhesion on the surface. Moreover this damage occurs more quickly with an increase in the number of revolutions. In the vibration characteristics, the amplitude of vibration wave appears high with an increase in the friction coefficient. In the high frequency range between 1000 and 2000 Hz, a wide range of frequency components with high amplitude occurs continuously irrespective of the number of revolutions.

Site-response effects on RC buildings isolated by triple concave friction pendulum bearings

  • Ates, Sevket;Yurdakul, Muhammet
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.693-715
    • /
    • 2011
  • The main object of this study is to evaluate the seismic response effects on a reinforced concrete building isolated by triple concave friction pendulum (TCFP) bearings. The site-response effects arise from the difference in the local soil conditions at the support points of the buildings. The local soil conditions are, therefore, considered as soft, medium and firm; separately. The results on the responses of the isolated building are compared with those of the non-isolated. The building model used in the time history analysis, which is a two-dimensional and eight-storey reinforced concrete building with and without the seismic isolation bearings and/or the local soil conditions, is composed of two-dimensional moment resisting frames for superstructure and of plane elements featuring plane-stress for substructure. The TCFP bearings for isolating the building are modelled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. In order to investigate the efficiency of both the seismic isolation bearings and the site-response effects on the buildings, the time history analyses are elaborately conducted. It is noted that the site-response effects are important for the isolated building constructed on soft, medium or firm type local foundation soil. The results of the analysis demonstrate that the site-response has significant effects on the response values of the structure-seismic isolation-foundation soil system.

Horizontal stiffness solutions for unbonded fiber reinforced elastomeric bearings

  • Toopchi-Nezhad, H.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.395-410
    • /
    • 2014
  • Fiber Reinforced Elastomeric Bearings (FREBs) are a relatively new type of laminated bearings that can be used as seismic/vibration isolators or bridge bearings. In an unbonded (U)-FREB, the bearing is placed between the top and bottom supports with no bonding or fastening provided at its contact surfaces. Under shear loads the top and bottom faces of a U-FREB roll off the contact supports and the bearing exhibits rollover deformation. As a result of rollover deformation, the horizontal response characteristics of U-FREBs are significantly different than conventional elastomeric bearings that are employed in bonded application. Current literature lacks an efficient analytical horizontal stiffness solution for this type of bearings. This paper presents two simplified analytical models for horizontal stiffness evaluation of U-FREBs. Both models assume that the resistance to shear loads is only provided by an effective region of the bearing that sustains significant shear strains. The presented models are different in the way they relate this effective region to the horizontal bearing displacements. In comparison with experimental results and finite element analyses, the analytical models that are presented in this paper are found to be sufficiently accurate to be used in the preliminary design of U-FREBs.