• Title/Summary/Keyword: Joun

Search Result 252, Processing Time 0.021 seconds

Effect of Nitrogen Gas Pressure on the Property of TiN-Coated Layer of High Speed Steel by Arc ion Plating (AIP 법에서 질소가스 압력이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.124-130
    • /
    • 2008
  • The effect of nitrogen gas pressure in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured fur various nitrogen gas pressures. It has been shown that the nitrogen gas pressure has a considerable effect on the surface roughness, adhesion strength, atomic distribution of TiN, and surface deposition of TiN of the high speed steels but that it has little influence on the micro-hardness and coated thickness.

Development of Hot and Cold Combined Forging Process for a One-Way Clutch Bearing Outer Race (원웨이 클러치 베어링 외륜의 열간과 냉간 복합단조 공정 기술 개발)

  • Jang, S.J.;Jun, B.Y.;Jang, S.M.;Joun, M.S.;Moon, H.K.;Sung, H.S.;Heo, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.441-444
    • /
    • 2009
  • In this research, a hot and cold combined forging process for manufacturing net-shape one-way clutch bearing outer race of an automobile automatic transmission unit is developed. The process is composed of hot forging for manufacturing an optimized gear-like perform and precision cold forging for sizing the perform into final net-shape product. Finite element simulation techniques are applied to find the optimized process designs including blank and die shapes. The predictions and experiments are compared, revealing that they are in good agreement with each other. The dimensional test showed that the important dimensional requirements on gear tooth-like shape of the forged product were fulfilled.

  • PDF

Finite Element Simulation of a Hot Aluminum Roll Forging Process and its Experimental Verification (열간 알루미늄 롤단조 공정의 유한요소해석과 실험적 검증)

  • Eom, J.G.;Li, Q.S.;Lee, M.C.;Joun, M.S.;Jung, S.J.;Park, G.H.;Gwak, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.437-440
    • /
    • 2009
  • In this paper, an aluminum ring forging process of manufacturing an optimized perform for a hot forging process is simulated using AFDEX 3D, a general-purpose metal forming simulator based on rigid-thermoviscoplastic finite element method. Non-isothermal analysis is carried out and the predictions are compared with the experiments in terms of dimensional accuracy. It was shown that the predictions are in good agreement with the experiments.

  • PDF

Special Simulation Technique of Multi-Faced Long Bolt Forging Process (장축 다각 볼트 제조공정의 시뮬레이션 기술)

  • Han, S.S.;Eom, J.G.;Jang, S.M.;Lee, M.C.;Joun, M.S.;Kang, S.J.;Son, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.44-47
    • /
    • 2009
  • In this paper, limitation of rigid-plastic finite element method caused from rigid-plasticity assumption and numerical problem is investigated in detail and a useful scheme is proposed to get rid of the plastic deformation in rigid or elastic region. A typical example of a possible long bar extrusion process is given, which may be impossible to simulate without using the proposed scheme. The scheme is successfully applied to simulating the long bolt forging processes.

  • PDF

Rigid-thermoviscoplastic finite element analysis of an electric upsetting process (전기 업셋팅 공정의 강열점소성 유한요소해석)

  • Lee, M.C.;Choi, I.S.;Kim, H.T.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.177-182
    • /
    • 2007
  • We simulated an electric upsetting process by the rigid-thermoviscoplastic finite element method. Several engineering assumptions were made to calculate the heat generation due to the electric resistance. The skin effect of the bar was taken into account for the heat generation. The approach was applied to simulate an artificial electric upsetting process for the exhaust valve of the ship engine.

  • PDF

Simulation of Spider forging Processes and Verification of the Results (스파이더 단조공정의 시뮬레이션 및 결과의 검증)

  • Kim, H.T.;Lee, M.C.;Eom, J.G.;Jun, B.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.183-188
    • /
    • 2007
  • We simulated a hot forging process for the spider with four legs and an enclosed die forging process for the spider with three legs using an intelligent forging simulator AFDEX 3D and compared the predictions with the experiments in terms of the deformed shape. The formation of characteristic lines was emphasized in the simulation to simulate the extruded legs with higher accuracy.

  • PDF

Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimension and Three-Dimensional Approaches (2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석)

  • Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.195-200
    • /
    • 2007
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric.

  • PDF

Three-Dimensional Rigid-Plastic finite Element Analysis of Roll Forming Sequence of Stringer for Aircraft (항공기용 스트링거 롤 포밍공정의 3차원 강소성 유한요소해석)

  • Cho, J.H.;Kim, H.T.;Lee, M.C.;An, G.C.;Kim, H.W.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.201-206
    • /
    • 2007
  • In this paper, we apply a three-dimensional rigid-plastic finite element method to simulate an unsteady-state roll forming process. A typical roll forming process is investigated from the standpoint of computer simulation and its realistic analysis model is proposed. The material is considered as bulk material and discretized into hexahedral finite elements. The presented approach is applied to simulating the roll forming process of straight stringer used for aircraft structure.

  • PDF

Forging of Long Hollow Shafts of Hard-to-Form Material by Hollow Shaft Extrusion after Piercing with Back Pressing (후방 가압식 피어싱 및 중공축 압축 공법에 의한 난성형 재료 중공장축의 단조)

  • Jun, B.Y.;Lee, J.H.;Eom, J.G.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.338-343
    • /
    • 2007
  • We presented a special method of forging hollow shafts of hard-to-form material, which is composed of piercing with back pressing and hollow shaft extrusion. The presented method was applied to cold forging a bushing of an excavator. The finite element simulation technology was employed for developing the optimized process and the predictions were compared with the experiments. The method was also applied to an automotive part and was verified to be powerful for manufacturing the cold forged hollow shafts of the hard-to-form materials.

  • PDF

Kinematic Analysis of a Double-Action Link-Type Die Set for the Enclosed Die Forging (폐쇄단조용 복동링크식 다이세트의 기구학적 해석)

  • Park Rae-Hun;Jun Byoung-Yoon;Lee Min-Cheol;Joun Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1293-1297
    • /
    • 2006
  • In this paper, kinematic analysis of a double-action link-type die set for enclosed die forging is carried out. The structure of the die set and its operational principle during enclosed die forging are introduced in detail. A closed-form solution of the relative velocity of the middle plate with respect to the upper plate after the upper and lower dies are enclosed is given in terms of the link lengths and the distance from the lower pin to the upper pin of the link system. The effect of the link lengths on both strokes and velocities is investigated. It has been shown that the relative velocity of the middle plate with respect to the upper plate varies almost linearly with the stroke of the upper plate.