• Title/Summary/Keyword: Jonscher's power law

Search Result 2, Processing Time 0.017 seconds

Investigations of Temperature Effect on the Conduction Mechanism of Electrical Conductivity of Copolymer/Carbon Black Composite

  • El Hasnaoui, M.;Kreit, L.;Costa, L.C.;Achour, M.E.
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.121-125
    • /
    • 2017
  • This study deals the prediction of temperature effect on low-frequency dispersion of alternating current (AC) conductivity spectra of composite materials based on copolymer reinforced with carbon black (CB) particles. A sample of ethylene butylacrylate loaded with 13% of CB particles were prepared and investigated using the impedance spectroscopy representation in the frequency range from 40 Hz to 0.1 MHz and temperature range from $20^{\circ}C$ to $125^{\circ}C$. The dielectric constant, ${\varepsilon}^{\prime}$, and dielectric losses, ${\varepsilon}^{{\prime}{\prime}}$, were found to decrease with increasing frequency. The frequency dependence of the AC conductivity follows the universal power law with a large deviation in the high frequency region, the positive temperature coefficient in resistivity effect has been observed below the melting temperature which makes this composite potentially remarkable for industrial applications.

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K.;Singh, S.N.;Kumar, K.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.